【BZOJ1997】Planar(2-sat)
【BZOJ1997】Planar(2-sat)
题面
题解
很久没做过\(2-sat\)了
今天一见,很果断的就来切
这题不难呀
但是有个玄学问题:
平面图的性质:边数\(m\)的最大值为\(3n-6\)
然后就可以把边数减到\(O(n)\)级别。。。
现在好了
因为已经告诉你了一个环
那就先把环给抠出来
剩下的就相当于给你若干条边,
你可以从环里面连也可以从环外面连
判定是否可以没有交点
很熟悉的\(2-sat\)了
连边缩点,判断一下可行性
搞定
一开始边开小了,身败名裂
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAXL 22222
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int u,v;}E[MAXL];
struct edge{int v,next;}e[MAXL<<3];
int h[MAXL],cnt,tot;
inline void Add(int u,int v){e[cnt]=(edge){v,h[u]};h[u]=cnt++;}
int p[MAXL],S[MAXL],top,G[MAXL],gr;
int dfn[MAXL],low[MAXL],tim;
int n,m;
void init(int m)
{
cnt=1;gr=tot=top=0;
for(int i=1;i<=m+m;++i)dfn[i]=low[i]=G[i]=h[i]=0;
}
void Tarjan(int u,int ff)
{
dfn[u]=low[u]=++tim;
S[++top]=u;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==ff)continue;
if(!dfn[v])Tarjan(v,u),low[u]=min(low[u],low[v]);
else low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
int v;++gr;
do{v=S[top--];G[v]=gr;}while(u!=v);
}
}
bool check()
{
for(int i=1;i<=m;++i)if(G[i]==G[i+m])return false;
return true;
}
int main()
{
int T=read();
while(T--)
{
n=read();m=read();
for(int i=1;i<=m;++i)E[i].u=read(),E[i].v=read();
for(int i=1;i<=n;++i)p[read()]=i;
for(int i=1;i<=m;++i)E[i].u=p[E[i].u],E[i].v=p[E[i].v];
if(m>3*n-6){puts("NO");continue;}
init(m);
for(int i=1;i<=m;++i)if(abs(E[i].u-E[i].v)!=1)E[++tot]=E[i];
m=tot;
for(int i=1;i<=m;++i)if(E[i].u>E[i].v)swap(E[i].u,E[i].v);
for(int i=1;i<=m;++i)
for(int j=1;j<=m;++j)
if(E[i].u<E[j].u&&E[j].u<E[i].v&&E[i].v<E[j].v)
Add(i+m,j),Add(i,j+m),Add(j,i+m),Add(j+m,i);
for(int i=1;i<=m+m;++i)if(!dfn[i])Tarjan(i,0);
check()?puts("YES"):puts("NO");
}
}
【BZOJ1997】Planar(2-sat)的更多相关文章
- 【BZOJ2599】Race(点分治)
[BZOJ2599]Race(点分治) 题面 BZOJ权限题,洛谷 题解 好久没写过点分治了... 在ppl的帮助下终于想起来了 orz ppl 首先回忆一下怎么求有没有正好是\(K\)的路径 维护一 ...
- 【HDU4622】Reincarnation(后缀自动机)
[HDU4622]Reincarnation(后缀自动机) 题面 Vjudge 题意:给定一个串,每次询问l~r组成的子串的不同子串个数 题解 看到字符串的大小很小 而询问数太多 所以我们预处理任意的 ...
- 【BZOJ2882】工艺(后缀自动机)
[BZOJ2882]工艺(后缀自动机) 题面 BZOJ权限题,良心洛谷 题解 还是一样的,先把串在后面接一遍 然后构建\(SAM\) 直接按照字典序输出\(n\)次就行了 #include<io ...
- 【BZOJ2882】工艺(后缀数组)
[BZOJ2882]工艺(后缀数组) 题面 BZOJ权限题,我爱良心洛谷 题解 最容易的想法: 把字符串在后面接一份 然后求后缀数组就行了... #include<iostream> #i ...
- 【BZOJ3277】串(后缀自动机)
[BZOJ3277]串(后缀自动机) 题面 BZOJ 题解 广义后缀自动机??? 照着别人的打了一遍.. 相当于每个串都构建一个后缀自动机 构建完一个串之后,直接把当前的last指回root就行了?? ...
- 【BZOJ3238】差异(后缀自动机)
[BZOJ3238]差异(后缀自动机) 题面 BZOJ 题解 前面的东西直接暴力算就行了 其实没必要算的正正好 为了方便的后面的计算 我们不考虑\(i,j\)的顺序问题 也就是先求出\(\sum_{i ...
- 【BZOJ3998】弦论(后缀自动机)
[BZOJ3998]弦论(后缀自动机) 题面 BZOJ 题解 这题应该很简单 构建出\(SAM\)后 求出每个点往后还能构建出几个串 按照拓扑序\(dp\)一些就好了 然后就是第\(k\)大,随便搞一 ...
- 【SPOJ】Substrings(后缀自动机)
[SPOJ]Substrings(后缀自动机) 题面 Vjudge 题意:给定一个长度为\(len\)的串,求出长度为1~len的子串中,出现最多的出现了多少次 题解 出现次数很好处理,就是\(rig ...
- 【BZOJ1146】网络管理(整体二分)
[BZOJ1146]网络管理(整体二分) 题面 良心洛谷,有BZOJ权限题 题解 要看树套树的戳这里 毕竟是:智商不够数据结构来补 所以, 我们来当一回智商够的选手 听说主席树的题目大部分都可以整体二 ...
随机推荐
- dig挖出DNS的秘密
[最简单的dig用法] 最简单的dig用法,当然就是直接输入dig按回车. 1 2 3 4 5 6 $ dig ; <<>> DiG 9.8.2rc1-RedHat-9.8 ...
- MySQL创建带有编码的数据库
mysql> create database chao default character set utf8 collate utf8_general_ci;
- 给Linux系统/网络管理员的nmap的29个实用例子
Nmap亦称为Network Mapper(网络映射)是一个开源并且通用的用于Linux系统/网络管理员的工具.nmap用于探查网络.执行安全扫描.网络核查并且在远程机器上找出开放端口.它可以扫描在线 ...
- Java经典编程题50道之七
输入一行字符,分别统计出其中英文字母.空格.数字和其它字符的个数. public class Example07 { public static void main(String[] args) ...
- Spring mvc学习指南
使用flash attribute(闪存传值) 在配置文件中添加<mvc:annotion-driven/> 在controller方法参数里面添加RedirectAttributes r ...
- hdu 2048 递推&&错排
直接贴出递推公式: cnt[n]=(i-1)*(cnt[n-1]+cnt[n-2]); 数组保存的是失败的种数 AC代码: #include<cstdio> const int maxn= ...
- string (KMP+期望DP)
Time Limit: 1000 ms Memory Limit: 256 MB Description 给定一个由且仅由字符 'H' , 'T' 构成的字符串$S$. 给定一个最初为空的字符串 ...
- linux命令学习汇总
1. touch 命令 touch -简单来说touch 命令可以用来建立文件 文件不存在的情况下,也可以更改创建时间等等 2. pwd 查看目录---一般看目录用pwd 即可但是pwd -P 会不以 ...
- 深刻理解iosBlock
深刻理解iosBlock ///一个控制器里的方法 - (void)setRefreshHeader { ACWeakSelf(self); self.tableView.mj_header = [M ...
- win10如何快速扫描-上海IT外包
第一步,点击Windows图标 第二步点击所有应用 第三步点击Windows附件 最后点击Windows传真和扫描就可以了 上海IT33_专业的it外包一站式服务商,为多家企业提供it ...