【BZOJ5020】【THUWC2017】在美妙的数学王国中畅游(Link-Cut Tree,组合数学)
【BZOJ5020】【THUWC2017】在美妙的数学王国中畅游(Link-Cut Tree,组合数学)
题解
Description
数字和数学规律主宰着这个世界。
机器的运转,
生命的消长,
宇宙的进程,
这些神秘而又美妙的过程无不可以用数学的语言展现出来。
这印证了一句古老的名言:
“学好数理化,走遍天下都不怕。”
学渣小R被大学的数学课程虐得生活不能自理,微积分的成绩曾是他在教室里上的课的最低分。然而他的某位陈姓室友却能轻松地在数学考试中得到满分。为了提升自己的数学课成绩,有一天晚上(在他睡觉的时候),他来到了数学王国。
数学王国中,每个人的智商可以用一个属于 [0,1]的实数表示。数学王国中有 n 个城市,编号从 0 到 n−1 ,这些城市由若干座魔法桥连接。每个城市的中心都有一个魔法球,每个魔法球中藏有一道数学题。每个人在做完这道数学题之后都会得到一个在 [0,1] 区间内的分数。一道题可以用一个从 [0,1] 映射到 [0,1]的函数 f(x) 表示。若一个人的智商为 x ,则他做完这道数学题之后会得到 f(x)分。函数 f有三种形式:
正弦函数 sin(ax+b) (a∈[0,1],b∈[0,π],a+b∈[0,π])
指数函数 e^(ax+b) (a∈[−1,1],b∈[−2,0],a+b∈[−2,0])
一次函数 ax+b (a∈[−1,1],b∈[0,1],a+b∈[0,1]
数学王国中的魔法桥会发生变化,有时会有一座魔法桥消失,有时会有一座魔法桥出现。但在任意时刻,只存在至多一条连接任意两个城市的简单路径(即所有城市形成一个森林)。在初始情况下,数学王国中不存在任何的魔法桥。
数学王国的国王拉格朗日很乐意传授小R数学知识,但前提是小R要先回答国王的问题。这些问题具有相同的形式,即一个智商为 x 的人从城市 u 旅行到城市 v(即经过 u 到 v 这条路径上的所有城市,包括 u和 v )且做了所有城市内的数学题后,他所有得分的总和是多少。
Input
第一行两个正整数 n,m 和一个字符串 type 。
表示数学王国中共有 n 座城市,发生了 m 个事件,该数据的类型为 type 。
typet 字符串是为了能让大家更方便地获得部分分,你可能不需要用到这个输入。
其具体含义在【数据范围与提示】中有解释。
接下来 n 行,第 i 行表示初始情况下编号为 i 的城市的魔法球中的函数。
一个魔法用一个整数 f表示函数的类型,两个实数 a,b 表示函数的参数,若
f=1,则函数为 f(x)=sin(ax+b)(a∈[0,1],b∈[0,π],a+b∈[0,π])
f=2,则函数为 f(x)=e^(ax+b)(a∈[−1,1],b∈[−2,0],a+b∈[−2,0])
f=3,则函数为 f(x)=ax+b(a∈[−1,1],b∈[0,1],a+b∈[0,1])
接下来 m行,每行描述一个事件,事件分为四类。
appear u v 表示数学王国中出现了一条连接 u 和 v 这两座城市的魔法桥 (0≤u,v<n,u≠v) ,保证连接前 u和 v 这两座城市不能互相到达。
disappear u v 表示数学王国中连接 u 和 v 这两座城市的魔法桥消失了,保证这座魔法桥是存在的。
magic c f a b 表示城市 c 的魔法球中的魔法变成了类型为 f ,参数为 a,b 的函数
travel u v x 表示询问一个智商为 x 的人从城市 u 旅行到城市 v
(即经过 u到 v 这条路径上的所有城市,包括 u 和 v )后,他得分的总和是多少。
若无法从 u 到达 v ,则输出一行一个字符串 unreachable。
1≤n≤100000,1≤m≤200000
Output
对于每个询问,输出一行实数,表示得分的总和。
Sample Input
3 7 C1
1 1 0
3 0.5 0.5
3 -0.5 0.7
appear 0 1
travel 0 1 0.3
appear 0 2
travel 1 2 0.5
disappear 0 1
appear 1 2
travel 1 2 0.5
Sample Output
9.45520207e-001
1.67942554e+000
1.20000000e+000
题解
我拿到的题目底下还提供了一个泰勒展开的公式。。。
\]
其中\(f^{(i)}\)表示\(i\)阶导
因为\(i!\)增长得很快,大概取\(k=12\)就可以满足精度的要求
现在方法就很明朗了
首先,对于动态的维护边,很显然用Link-Cut Tree
所求是$$\sum_{i∈<u,v>}F(IQ)$$
相当于\(IQ\)是一个定值
那么,也就是说,上面的泰勒展开的公式中
每一项的\(\frac{(x-x0)^i}{i!}\)是可以直接提取出来的
所以,LCT直接维护每一个子树上的0阶导一直到15阶导之和
而\(x0\)的取可以取得比较随意一点(建议取0.5)
这样的话就可以解决这道题目了
其中LCT的复杂度\(O(nlogn)\)
而每次维护15个导,相当于增加了一个巨大的常数而已
每个点5s,BZOJ上总计80s,还是戳戳有余的
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
const double Pi=acos(-1);
const double E=pow(2,1/log(2));
#define MAX 120000
char type[10];
int F[MAX];
double a[MAX],b[MAX];
int n,m;
double Extra(int k,double x)
{
if(F[k]==1)return sin((a[k]*x+b[k]));
if(F[k]==2)return pow(E,a[k]*x+b[k]);
if(F[k]==3)return a[k]*x+b[k];
}
struct Node
{
int ch[2],ff;
int rev;
double s[15];
}t[MAX<<1];
int S[MAX],top;
bool isroot(int x){return t[t[x].ff].ch[0]!=x&&t[t[x].ff].ch[1]!=x;}
void pushup(int x)
{
if(F[x]==2)
{
t[x].s[0]=pow(E,0.5*a[x]+b[x]);
for(int i=1;i<15;++i)t[x].s[i]=t[x].s[i-1]*a[x];
}
else if(F[x]==1)
{
t[x].s[0]=sin(a[x]*0.5+b[x]);
t[x].s[1]=cos(a[x]*0.5+b[x])*a[x];
for(int i=2;i<15;++i)t[x].s[i]=t[x].s[i-2]*(-a[x]*a[x]);
}
else if(F[x]==3)
{
t[x].s[0]=0.5*a[x]+b[x];
t[x].s[1]=a[x];
for(int i=2;i<15;++i)t[x].s[i]=0;
}
for(int i=0;i<15;++i)t[x].s[i]+=t[t[x].ch[0]].s[i]+t[t[x].ch[1]].s[i];
}
void rotate(int x)
{
int y=t[x].ff,z=t[y].ff;
int k=t[y].ch[1]==x;
if(!isroot(y))t[z].ch[t[z].ch[1]==y]=x;t[x].ff=z;
t[y].ch[k]=t[x].ch[k^1];t[t[x].ch[k^1]].ff=y;
t[x].ch[k^1]=y;t[y].ff=x;
pushup(y);pushup(x);
}
void pushdown(int x)
{
if(!t[x].rev)return;
swap(t[x].ch[0],t[x].ch[1]);
t[t[x].ch[0]].rev^=1;
t[t[x].ch[1]].rev^=1;
t[x].rev^=1;
}
void Splay(int x)
{
S[top=1]=x;
for(int i=x;!isroot(i);i=t[i].ff)S[++top]=t[i].ff;
while(top)pushdown(S[top--]);
while(!isroot(x))
{
int y=t[x].ff,z=t[y].ff;
if(!isroot(y))
(t[y].ch[1]==x)^(t[z].ch[1]==y)?rotate(x):rotate(y);
rotate(x);
}
}
void access(int x){for(int y=0;x;y=x,x=t[x].ff)Splay(x),t[x].ch[1]=y,pushup(x);}
void makeroot(int x){access(x);Splay(x);t[x].rev^=1;}
void split(int x,int y){makeroot(x);access(y);Splay(y);}
void cut(int x,int y){split(x,y);t[y].ch[0]=t[x].ff=0;pushup(y);}
void link(int x,int y){makeroot(x);t[x].ff=y;}
int findroot(int x){access(x);Splay(x);while(t[x].ch[0])x=t[x].ch[0];return x;}
int tot;
double ans;
double T;
int main()
{
freopen("math.in","r",stdin);
freopen("math.out","w",stdout);
scanf("%d%d%s",&n,&m,type);
for(int i=1;i<=n;++i)
scanf("%d%lf%lf",&F[i],&a[i],&b[i]);
char ch[20];
int u,v;
while(m--)
{
scanf("%s",ch);
if(ch[0]=='a')
{
scanf("%d%d",&u,&v);u++;v++;
link(u,v);
}
else if(ch[0]=='d')
{
scanf("%d%d",&u,&v);u++;v++;
cut(u,v);
}
else if(ch[0]=='m')
{
scanf("%d",&u);u++;
makeroot(u);
scanf("%d%lf%lf",&F[u],&a[u],&b[u]);
pushup(u);
}
else
{
scanf("%d%d%lf",&u,&v,&T);u++;v++;
if(findroot(u)!=findroot(v))puts("unreachable");
else
{
ans=0;
split(u,v);
double p1=1,p2=1;
for(int i=0;i<15;++i)ans+=t[v].s[i]*p2/p1,p1*=(i+1),p2*=(T-0.5);
printf("%.8e\n",ans);
}
}
}
return 0;
}
【BZOJ5020】【THUWC2017】在美妙的数学王国中畅游(Link-Cut Tree,组合数学)的更多相关文章
- [BZOJ5020][THUWC2017]在美妙的数学王国中畅游(LCT)
5020: [THUWC 2017]在美妙的数学王国中畅游 Time Limit: 80 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 323 ...
- BZOJ5020 THUWC2017在美妙的数学王国中畅游(LCT)
明摆着的LCT,问题在于如何维护答案.首先注意到给出的泰勒展开式,并且所给函数求导非常方便,肯定要用上这玩意.容易想到展开好多次达到精度要求后忽略余项.因为x∈[0,1]而精度又与|x-x0|有关,当 ...
- [LOJ2289][THUWC2017]在美妙的数学王国中畅游:Link-Cut Tree+泰勒展开
分析 又有毒瘤出题人把数学题出在树上了. 根据泰勒展开,有: \[e^x=1+\frac{1}{1!}x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+...\] \[sin(x)= ...
- [THUWC2017]在美妙的数学王国中畅游
[THUWC2017]在美妙的数学王国中畅游 e和sin信息不能直接合并 泰勒展开,大于21次太小,认为是0,保留前21次多项式即可 然后就把e,sin ,kx+b都变成多项式了,pushup合并 上 ...
- 并不对劲的bzoj5020:loj2289:p4546:[THUWC2017]在美妙的数学王国中畅游
题目大意 有一个n(\(n\leq 10^5\))个点的森林,每个点\(u\)上有个函数\(f_u(x)\),是形如\(ax+b\)或\(e^{ax+b}\)或\(sin(ax+b)\)的函数,保证当 ...
- Luogu4546 THUWC2017 在美妙的数学王国中畅游 LCT、泰勒展开
传送门 题意:反正就是一堆操作 LCT总是和玄学东西放在一起我们不妨令$x_0=0.5$(其实取什么都是一样的,但是最好取在$[0,1]$的范围内),将其代入给出的式子,我们得到的$f(x)$的式子就 ...
- [THUWC2017]在美妙的数学王国中畅游 LCT+泰勒展开+求导
p.s. 复合函数求导时千万不能先带值,再求导. 一定要先将符合函数按照求导的规则展开,再带值. 设 $f(x)=g(h(x))$,则对 $f(x)$ 求导: $f'(x)=h'(x)g'(h(x)) ...
- 题解 洛谷 P4546 【[THUWC2017]在美妙的数学王国中畅游】
首先发现有连边和删边的操作,所以我们肯定要用\(LCT\)来进行维护. 接下来考虑如何进行\(LCT\)上的信息合并. \(f=1\),则函数为\(f(x)=sin(ax+b)\) \(f=2\),则 ...
- Luogu P4546 [THUWC2017]在美妙的数学王国中畅游
题意 题意奇奇怪怪,这里就不写了. \(\texttt{Data Range:}1\leq n\leq 10^5,1\leq m\leq 2\times 10^5\) 题解 为什么你们都是卡在数学方面 ...
随机推荐
- php+redis 学习 一 连接
<?php header('content-type:text/html;chaeset=utf-8'); $redis = new Redis(); $redis->connect('1 ...
- Python 运算符,你了解多少?
新年新气象,文档更新继续~ 一.什么是运算符? 之前我们有定义过变量,变量是用来存储数据的,存储的数据是为了运算,运算就会使用到运算符 举个简单的例子 4 +5 = 9 . 例子中,4 和 5 被称为 ...
- HashMap原理阅读
前言 还是需要从头阅读下HashMap的源码.目标在于更好的理解HashMap的用法,学习更精炼的编码规范,以及应对面试. 它根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而 ...
- mongodb的TTL索引介绍(超时索引)
TTL索引是mongodb新支持的用于延时自动删除记录的一种索引.它仅包含一个字段,该字段值需要是Date()类型,并且不支持复合索引.可以指定某条记录在延时固定时间后自动删除.数据自动超时删除主要用 ...
- .net 分割字符串
string a = "1-2-3-4-5-6-7-8-9"; string[] b = a.Split(new Char[] { '-' }); for (int i = 0; ...
- 在mac上安装Docker
1.进入一下地址进行下载docker https://download.docker.com/mac/stable/Docker.dmg 进入后进行下载后进行安装 2.将其拖动到Appliaction ...
- js在工作中遇到的一些问题
前言 js这种语言没有太多封装好的模式或者统一的编程方式,所以一些细节的问题很容易导致bug,那下面就写为:一份坚固的代码是什么样的. 持续更新一下,记一些good case和bug. 事件绑定的选择 ...
- SpringBoot中过滤器、监听器以及拦截器
属于javax.servlet所提供的Api 拦截器原理 简单来讲是通过动态代理实现,被访问的目标方法通过代理类(方法)来执行,这样我们就可以在真正要执行的方法执行前.后做一些处理: 通过拦截器这种方 ...
- PHP调用外部命令
------------------------------------------------------------------ 一.PHP调用外部命令总结 ...
- MySQL双主一致性架构优化
一.双主保证高可用 MySQL数据库集群常使用一主多从,主从同步,读写分离的方式来扩充数据库的读性能,保证读库的高可用,但此时写库仍然是单点. 在一个MySQL数据库集群中可以设置两个主库,并设置双向 ...