ELK 经典用法—企业自定义日志手机切割和mysql模块
本文收录在Linux运维企业架构实战系列
一、收集切割公司自定义的日志
很多公司的日志并不是和服务默认的日志格式一致,因此,就需要我们来进行切割了。
1、需切割的日志示例
2018-02-24 11:19:23,532 [143] DEBUG performanceTrace 1145 http://api.114995.com:8082/api/Carpool/QueryMatchRoutes 183.205.134.240 null 972533 310000 TITTL00 HUAWEI 860485038452951 3.1.146 HUAWEI 5.1 113.552344 33.332737 发送响应完成 Exception:(null)
2、切割的配置
在logstash 上,使用fifter 的grok 插件进行切割
input {
        beats {
                port => ""
        }
}
filter {
    grok {
        match => {
            "message" => "%{TIMESTAMP_ISO8601:timestamp} \[%{NUMBER:thread:int}\] %{DATA:level} (?<logger>[a-zA-Z]+) %{NUMBER:executeTime:int} %{URI:url} %{IP:clientip} %{USERNAME:UserName} %{NUMBER:userid:int} %{NUMBER:AreaCode:int} (?<Board>[0-9a-zA-Z]+[-]?[0-9a-zA-Z]+) (?<Brand>[0-9a-zA-Z]+[-]?[0-9a-zA-Z]+) %{NUMBER:DeviceId:int} (?<TerminalSourceVersion>[0-9a-z\.]+) %{NUMBER:Sdk:float} %{NUMBER:Lng:float} %{NUMBER:Lat:float} (?<Exception>.*)"
        }
        remove_field => "message"
    }
    date {
                   match => ["timestamp","dd/MMM/YYYY:H:m:s Z"]
        remove_field => "timestamp"
           }
    geoip {
        source => "clientip"
        target => "geoip"
        database => "/etc/logstash/maxmind/GeoLite2-City.mmdb"
    }
}
output {
    elasticsearch {
        hosts => ["http://192.168.10.101:9200/"]
        index => "logstash-%{+YYYY.MM.dd}"
        document_type => "apache_logs"
    }
}
3、切割解析后效果

4、最终kibana 展示效果
① top10 clientip

② top5 url

③ 根据ip 显示地理位置

⑤ top10 executeTime

⑥ 其他字段都可进行设置,多种图案,也可将多个图形放在一起展示

二、grok 用法详解
1、简介
Grok是迄今为止使蹩脚的、无结构的日志结构化和可查询的最好方式。Grok在解析 syslog logs、apache and other webserver logs、mysql logs等任意格式的文件上表现完美。
Grok内置了120多种的正则表达式库,地址:https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns。
2、入门例子
① 示例
55.3.244.1 GET /index.html 15824 0.043
② 分析
这条日志可切分为5个部分,IP(55.3.244.1)、方法(GET)、请求文件路径(/index.html)、字节数(15824)、访问时长(0.043),对这条日志的解析模式(正则表达式匹配)如下:
%{IP:client} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:duration}
③ 写到filter中
filter { grok { match => { "message" => "%{IP:client} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:duration}"} } }
④ 解析后效果
client: 55.3.244.1
method: GET
request: /index.html
bytes:
duration: 0.043
3、解析任意格式日志
(1)解析任意格式日志的步骤:
① 先确定日志的切分原则,也就是一条日志切分成几个部分。
② 对每一块进行分析,如果Grok中正则满足需求,直接拿来用。如果Grok中没用现成的,采用自定义模式。
③ 学会在Grok Debugger中调试。
(2)grok 的分类
- 满足自带的grok 正则 grok_pattern
 
① 可以查询
# less /usr/share/logstash/vendor/bundle/jruby/1.9/gems/logstash-patterns-core-4.1.1/patterns/grok-patterns

② 使用格式
grok_pattern 由零个或多个 %{SYNTAX:SEMANTIC}组成
例: %{IP:clientip}
其中SYNTAX 是表达式的名字,是由grok提供的:例如数字表达式的名字是NUMBER,IP地址表达式的名字是IP
SEMANTIC 表示解析出来的这个字符的名字,由自己定义,例如IP字段的名字可以是 client
- 自定义SYNTAX
 
使用格式:(?<field_name>the pattern here)
例:(?<Board>[0-9a-zA-Z]+[-]?[0-9a-zA-Z]+)
(3)正则解析容易出错,强烈建议使用Grok Debugger调试,姿势如下(我打开这个网页不能用)

三、使用mysql 模块,收集mysql 日志
1、官方文档使用介绍
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-module-mysql.html
2、配置filebeat ,使用mysql 模块收集mysql 的慢查询
# vim filebeat.yml
#=========================== Filebeat prospectors =============================
filebeat.modules:
- module: mysql
error:
enabled: true
var.paths: ["/var/log/mariadb/mariadb.log"] slowlog:
enabled: true
var.paths: ["/var/log/mariadb/mysql-slow.log"]
#----------------------------- Redis output --------------------------------
output.redis:
hosts: ["192.168.10.102"]
password: "ilinux.io"
key: "httpdlogs"
datatype: "list"
db: 0
timeout: 5
3、elk—logstash 切割mysql 的慢查询日志
① 切割配置
# vim mysqllogs.conf
input {
        redis {
                host => "192.168.10.102"
                port => ""
                password => "ilinux.io"
                data_type => "list"
                key => "httpdlogs"
                threads => 2
        }
}
filter {
     if  [fields][type] == "pachongmysql" {
            grok {
                      match => { 
			        "message" => "^#\ Time:\ (?<Time>.*)"
		      }
		      match => {
			         "message" => "^#\ User\@Host:\ (?<User>.*)\[exiuapp\]\ \@\ \ \[%{IP:hostip}\]\ \ Id:\ \ \ \ %{NUMBER:Id:int}"
		      }
		      match => {
                                 "message" => "^#\ Query_time:\ %{NUMBER:Query_time:float}\ \ Lock_time:\ %{NUMBER:Lock_time:float}\ Rows_sent:\ %{NUMBER:Rows_sent:int}\ \ Rows_examined:\ %{NUMBER:Rows_examined:int}"
		      }
		      match => {
                                 "message" => "^use\ (?<database>.*)"
		      }
		      match => {
                                 "message" => "^SET\ timestamp=%{NUMBER:timestamp:int}\;"
                      }
		      match => {
                                 "message" => "(?<sql>.*);"
                      }
		      remove_field => "message"
            }
     }
}
output {
        elasticsearch {
                hosts => ["http://192.168.10.101:9200/"]
                index => "logstash-%{+YYYY.MM.dd}"
                document_type => "mysql_logs"
        }
} 
② 切割后显示结果

4、kibana 最终显示效果
① 哪几个的数据库最多,例:top2 库
表无法显示,因为有些语句不涉及表,切割不出来

② 哪几个sql语句出现的最多,例:top5 sql语句

③ 哪几个sql语句出现的最多,例:top5 sql语句

④ 哪几台服务器慢查询日志生成的最多,例:top5 服务器

⑤ 哪几个用户慢查询日志生成的最多,例:top2 用户

可以合并显示

5、使用mysql 模块收集mysql 的慢查询
(1)filebeat 配置和上边一样
(2)elk—logstash 切割mysql 的错误日志
# vim mysqllogs.conf
filter {
        grok {
                match => { "message" => "(?<timestamp>\d{4}-\d{2}-\d{2}\s+\d{2}:\d{2}:\d{2}) %{NUMBER:pid:int} \[%{DATA:level}\] (?<content>.*)" }
        }
        date {
                match => ["timestamp","dd/MMM/YYYY:H:m:s Z"]
                remove_field => "timestamp"
        }
}
(3)就不在展示结果了
四、ELK 收集多实例日志
很多情况下,公司资金不足,不会一对一收集日志;因此,一台logstash 使用多实例收集处理多台agent 的日志很有必要。
1、filebeat 的配置
主要是output 的配置,只需不同agent 指向不同的端口即可
① agent 1 配置指向5044 端口
#----------------------------- Logstash output --------------------------------
output.logstash:
# The Logstash hosts
hosts: ["192.168.10.107:5044"]
② agent 2 配置指向5045 端口
#----------------------------- Logstash output --------------------------------
output.logstash:
# The Logstash hosts
hosts: ["192.168.10.107:5045"]
2、logstash 的配置
针对不同的agent ,input 指定对应的端口
① agent 1
input {
        beats {
                port => ""
        }
}
output {   #可以在output 加以区分
        elasticsearch {
                hosts => ["http://192.168.10.107:9200/"]
                index => "logstash-apache1-%{+YYYY.MM.dd}"
                document_type => "apache1_logs"
        }
}
② agent 1
input {
        beats {
                port => ""
        }
}
output {   #可以在output 加以区分
        elasticsearch {
                hosts => ["http://192.168.10.107:9200/"]
                index => "logstash-apache2-%{+YYYY.MM.dd}"
                document_type => "apache2_logs"
        }
}
开启对应的服务就ok 了。
ELK 经典用法—企业自定义日志手机切割和mysql模块的更多相关文章
- ELK 经典用法—企业自定义日志收集切割和mysql模块
		
本文收录在Linux运维企业架构实战系列 一.收集切割公司自定义的日志 很多公司的日志并不是和服务默认的日志格式一致,因此,就需要我们来进行切割了. 1.需切割的日志示例 2018-02-24 11: ...
 - 14.2-ELK 经典用法—企业自定义日志收集切割和mysql模块
		
本文收录在Linux运维企业架构实战系列 一.收集切割公司自定义的日志 很多公司的日志并不是和服务默认的日志格式一致,因此,就需要我们来进行切割了. 1.需切割的日志示例 2018-02-24 11: ...
 - 项目实战14—ELK 企业内部日志分析系统
		
一.els.elk 的介绍 1.els,elk els:ElasticSearch,Logstash,Kibana,Beats elk:ElasticSearch,Logstash,Kibana ① ...
 - 项目实战14.1—ELK 企业内部日志分析系统
		
本文收录在Linux运维企业架构实战系列 一.els.elk 的介绍 1.els,elk els:ElasticSearch,Logstash,Kibana,Beats elk:ElasticSear ...
 - ELK收集Nginx自定义日志格式输出
		
1.ELK收集日志的有两种常用的方式: 1.1:不修改源日志格式,简单的说就是在logstash中转通过 grok方式进行过滤处理,将原始无规则的日志转换为规则日志(Logstash自定义日志格式) ...
 - 《Spring 5官方文档》 Spring AOP的经典用法
		
原文链接 在本附录中,我们会讨论一些初级的Spring AOP接口,以及在Spring 1.2应用中所使用的AOP支持. 对于新的应用,我们推荐使用 Spring AOP 2.0来支持,在AOP章节有 ...
 - ELK 6安装配置 nginx日志收集 kabana汉化
		
#ELK 6安装配置 nginx日志收集 kabana汉化 #环境 centos 7.4 ,ELK 6 ,单节点 #服务端 Logstash 收集,过滤 Elasticsearch 存储,索引日志 K ...
 - perl的Sys::Syslog模块(openlog,syslog,closelog函数,setlogsock)-自定义日志
		
perl的Sys::Syslog模块(openlog,syslog,closelog函数,setlogsock)-自定义日志 http://blog.chinaunix.net/xmlrpc.php? ...
 - ELK:收集k8s容器日志最佳实践
		
简介 关于日志收集这个主题,这已经是第三篇了,为什么一再研究这个课题,因为这个课题实在太重要,而当今优秀的开源解决方案还不是很明朗: 就docker微服务化而言,研发有需求标准输出,也有需求文件输出, ...
 
随机推荐
- shell参数传递
			
应用实例: #!/bin/bash #运行:bash para_tran.bash text1.txt text2.txt #"set $1"设置存储传入的第一参数 #" ...
 - Nagios状态长时间处于Pending的解决方法
			
1 nagios 守护进程引起的一系列问题 1 影响nagios web页面收集监控信息 致使页面出现时而收集不到服务信息 2 影响pnp查看图形化,出图缓慢 3 影响查看服务状态信息,致使有时候查看 ...
 - History对象和location对象
			
history对象 History对象包含用户在浏览器窗口中访问过的url.不是所有浏览器都支持该对象. 属性length 返回浏览器历史列表中的URL数量. 方法:back() 加载histor ...
 - spring之集合注入
			
list: <bean id="userAction" class="com.xx.action.UserAction"> <property ...
 - HTML核心标签之表格标签(二)
			
基本用法: <ul type="cir"> <li>显示数据</li> <li>显示数据</li> </ul> ...
 - CentOS6.9编译安装nginx1.4.7
			
1.系统安装开发包组和zlib-devel,关闭iptables [root@bogon ~]# yum groupinstall -y "Development Tools" [ ...
 - FreeMarker template error: The following has evaluated to null or missing: ==> blogger.md [in template "admin/about.ftl" at line 44, column 84]
			
FreeMarker template error:The following has evaluated to null or missing:==> blogger.md [in templ ...
 - WPF: WPF 中的 Triggers 和 VisualStateManager
			
在之前写的这篇文章 WPF: 只读依赖属性的介绍与实践 中,我们介绍了在 WPF 自定义控件中如何添加只读依赖属性,并且使其结合属性触发器 (Trigger) 来实现对控件样式的改变.事实上,关于触发 ...
 - qt事件机制---事件范例
			
在笔记qt课程04笔记中
 - 网络服务器操作命令telnet
			
有些命令是内部的,系统自带的,在装好系统后,就可以随时使用有些命令是系统中没有的,要自己安装一下才能使用,比如你说的telnet,需要安装一下才能使用的.CentOS中用 yum install te ...