"""
利用numpy实现一个两层的全连接网络
网络结构是:input ->(w1) fc_h -> relu ->(w2) output
数据是随机出的
"""
import numpy as np
#维度和大小参数定义
batch_size = 64
input_dim = 1000
output_dim = 10
hidden_dim = 100 # 数据虚拟 (x,y)
# 每行是一条数据 输入是64*1000,1000表示有1000维度的特征 输出是64*100
# 训练完参数之后,若对一条数据forward,直接运用w1 w2参数即可
# 使用relu激活函数
x = np.random.randn(batch_size,input_dim)
y = np.random.randn(batch_size,output_dim) #定义要训练的参数 w1(1000*100) w2(100*10)
# 方便起见,不设bisa
w1 = np.random.randn(input_dim,hidden_dim)
w2 = np.random.randn(hidden_dim,output_dim) # lr
lr = 1e-06
#实现
for i in range(500):
#迭代500次
#前向传播
h = x.dot(w1) #隐藏层
h_relu = np.maximum(h,0) #relu激活函数
y_hat = h_relu.dot(w2) #计算损失
loss = np.square(y_hat - y).sum() #计算梯度
y_hat_grad = 2.0*(y_hat-y)
w2_grad = h_relu.T.dot(y_hat_grad)
h_relu_grad = y_hat_grad.dot(w2.T)
h_grad = h_relu_grad.copy()
h_grad[h < 0] = 0
w1_grad = x.T.dot(h_grad) #更新参数
w1 = w1 - lr*w1_grad
w2 = w2 - lr*w2_grad
#print("epoch "+str(i)+" end......")
#print("参数w1:")
#print(w1)
#print("参数w1:")
#print(w2)
"""
使用pytorch实现上面的二层神经网络
"""
# pytorch中
## 内积
# tensor.mm(tensor)
## 转置
# tensor.t()
## 乘方运算
# tensor.pow(n)
import torch
device = torch.device('cpu')
# device = torch.device('cuda') # Uncomment this to run on GPU # N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10 # Create random input and output data
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device) # Randomly initialize weights
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device) learning_rate = 1e-6
for t in range(500):
# Forward pass: compute predicted y
h = x.mm(w1)
h_relu = h.clamp(min=0)
y_pred = h_relu.mm(w2) # Compute and print loss; loss is a scalar, and is stored in a PyTorch Tensor
# of shape (); we can get its value as a Python number with loss.item().
loss = (y_pred - y).pow(2).sum()
#print(t, loss.item()) # Backprop to compute gradients of w1 and w2 with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h_relu.t().mm(grad_y_pred)
grad_h_relu = grad_y_pred.mm(w2.t())
grad_h = grad_h_relu.clone()
grad_h[h < 0] = 0
grad_w1 = x.t().mm(grad_h) # Update weights using gradient descent
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2
"""
使用pytorch的自动求导 重新实现
"""
import torch device = torch.device('cpu')
# device = torch.device('cuda') # Uncomment this to run on GPU # N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10 # Create random Tensors to hold input and outputs
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device) # Create random Tensors for weights; setting requires_grad=True means that we
# want to compute gradients for these Tensors during the backward pass.
w1 = torch.randn(D_in, H, device=device, requires_grad=True)
w2 = torch.randn(H, D_out, device=device, requires_grad=True) learning_rate = 1e-6
for t in range(500):
# Forward pass: compute predicted y using operations on Tensors. Since w1 and
# w2 have requires_grad=True, operations involving these Tensors will cause
# PyTorch to build a computational graph, allowing automatic computation of
# gradients. Since we are no longer implementing the backward pass by hand we
# don't need to keep references to intermediate values.
y_pred = x.mm(w1).clamp(min=0).mm(w2) # Compute and print loss. Loss is a Tensor of shape (), and loss.item()
# is a Python number giving its value.
loss = (y_pred - y).pow(2).sum()
#print(t, loss.item()) # Use autograd to compute the backward pass. This call will compute the
# gradient of loss with respect to all Tensors with requires_grad=True.
# After this call w1.grad and w2.grad will be Tensors holding the gradient
# of the loss with respect to w1 and w2 respectively.
loss.backward() # Update weights using gradient descent. For this step we just want to mutate
# the values of w1 and w2 in-place; we don't want to build up a computational
# graph for the update steps, so we use the torch.no_grad() context manager
# to prevent PyTorch from building a computational graph for the updates
with torch.no_grad():
w1 -= learning_rate * w1.grad
w2 -= learning_rate * w2.grad # Manually zero the gradients after running the backward pass
w1.grad.zero_()
w2.grad.zero_()
# 自己定义网络的一层实现

# 定义自己Relu类,继承自Function函数
# 必须同时实现forward和backward
# 前向传播时,forward用的自己定义的这个
# 反向传播时,必然会再找自己实现的这个backward,如不写,则no implment error class MyReLU(torch.autograd.Function):
"""
We can implement our own custom autograd Functions by subclassing
torch.autograd.Function and implementing the forward and backward passes
which operate on Tensors.
"""
@staticmethod
def forward(ctx, x):
"""
In the forward pass we receive a context object and a Tensor containing the
input; we must return a Tensor containing the output, and we can use the
context object to cache objects for use in the backward pass.
"""
ctx.save_for_backward(x)
return x.clamp(min=0) @staticmethod
def backward(ctx, grad_output):
"""
In the backward pass we receive the context object and a Tensor containing
the gradient of the loss with respect to the output produced during the
forward pass. We can retrieve cached data from the context object, and must
compute and return the gradient of the loss with respect to the input to the
forward function.
"""
x, = ctx.saved_tensors
grad_x = grad_output.clone()
grad_x[x < 0] = 0
return grad_x device = torch.device('cpu')
# device = torch.device('cuda') # Uncomment this to run on GPU # N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10 # Create random Tensors to hold input and output
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device) # Create random Tensors for weights.
w1 = torch.randn(D_in, H, device=device, requires_grad=True)
w2 = torch.randn(H, D_out, device=device, requires_grad=True) learning_rate = 1e-6
for t in range(500):
# Forward pass: compute predicted y using operations on Tensors; we call our
# custom ReLU implementation using the MyReLU.apply function
y_pred = MyReLU.apply(x.mm(w1)).mm(w2) # Compute and print loss
loss = (y_pred - y).pow(2).sum()
#print(t, loss.item()) # Use autograd to compute the backward pass.
loss.backward() with torch.no_grad():
# Update weights using gradient descent
w1 -= learning_rate * w1.grad
w2 -= learning_rate * w2.grad # Manually zero the gradients after running the backward pass
w1.grad.zero_()
w2.grad.zero_()

【Code】numpy、pytorch实现全连接神经网络的更多相关文章

  1. 如何使用numpy实现一个全连接神经网络?(上)

    全连接神经网络的概念我就不介绍了,对这个不是很了解的朋友,可以移步其他博主的关于神经网络的文章,这里只介绍我使用基本工具实现全连接神经网络的方法. 所用工具: numpy == 1.16.4 matp ...

  2. MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...

  3. TensorFlow之DNN(二):全连接神经网络的加速技巧(Xavier初始化、Adam、Batch Norm、学习率衰减与梯度截断)

    在上一篇博客<TensorFlow之DNN(一):构建“裸机版”全连接神经网络>中,我整理了一个用TensorFlow实现的简单全连接神经网络模型,没有运用加速技巧(小批量梯度下降不算哦) ...

  4. TensorFlow之DNN(一):构建“裸机版”全连接神经网络

    博客断更了一周,干啥去了?想做个聊天机器人出来,去看教程了,然后大受打击,哭着回来补TensorFlow和自然语言处理的基础了.本来如意算盘打得挺响,作为一个初学者,直接看项目(不是指MINIST手写 ...

  5. 【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型

    初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构 ...

  6. Tensorflow 多层全连接神经网络

    本节涉及: 身份证问题 单层网络的模型 多层全连接神经网络 激活函数 tanh 身份证问题新模型的代码实现 模型的优化 一.身份证问题 身份证号码是18位的数字[此处暂不考虑字母的情况],身份证倒数第 ...

  7. tensorflow中使用mnist数据集训练全连接神经网络-学习笔记

    tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: ...

  8. 深度学习tensorflow实战笔记(1)全连接神经网络(FCN)训练自己的数据(从txt文件中读取)

    1.准备数据 把数据放进txt文件中(数据量大的话,就写一段程序自己把数据自动的写入txt文件中,任何语言都能实现),数据之间用逗号隔开,最后一列标注数据的标签(用于分类),比如0,1.每一行表示一个 ...

  9. 基于MNIST数据集使用TensorFlow训练一个包含一个隐含层的全连接神经网络

    包含一个隐含层的全连接神经网络结构如下: 包含一个隐含层的神经网络结构图 以MNIST数据集为例,以上结构的神经网络训练如下: #coding=utf-8 from tensorflow.exampl ...

随机推荐

  1. 2.1命令行和JSON的配置「深入浅出ASP.NET Core系列」

    希望给你3-5分钟的碎片化学习,可能是坐地铁.等公交,积少成多,水滴石穿,谢谢关注. 命令行配置 1.新建控制台项目 2.nuget引入microsoft.aspnetcore.all 这里要注意版本 ...

  2. Python数据采集——提取页面内容的几种手段

    前言 在我们获取了网页的信息后,往往需要对原始信息进行提取,得到我们想要的数据.对信息的提取方式主要有以下几种:正则表达式.XPath.BeautifulSoup.本篇博客主要总结这三种方式的基本语法 ...

  3. Python 为什么要使用描述符?

    学习 Python 这么久了,说起 Python 的优雅之处,能让我脱口而出的, Descriptor(描述符)特性可以排得上号. 描述符 是Python 语言独有的特性,它不仅在应用层使用,在语言的 ...

  4. [转]Blue Prism Interview Questions and Answers

    本文转自:https://www.rpatraining.co.in/blue-prism-interview-questions/ What is a Visual Business Object? ...

  5. 非常易于理解‘类'与'对象’ 间 属性 引用关系,暨《Python 中的引用和类属性的初步理解》读后感

    关键字:名称,名称空间,引用,指针,指针类型的指针(即指向指针的指针) 我读完后的理解总结: 1. 我们知道,python中的变量的赋值操作,变量其实就是一个名称name,赋值就是将name引用到一个 ...

  6. 团队项目(六)- Alpha阶段项目复审(江山代有才人秃)

    排名仅代表个人观点: 小组名字 优点 缺点&Bug报告 排名 中午吃啥队 从测试链接来看,作为一个订餐的APP,有着跟现在的订餐APP相似的功能,很完整,是一个踏踏实实做出来的项目 向购物车中 ...

  7. django xadmin 1不在可用的选项中

    报错:1不在可用的选项中 解决办法: 对CharField的choices的选项, gender = models.CharField(max_length=, choices=((, , " ...

  8. python高级(4)—— 虚拟环境安装使用

    虚拟环境 什么是虚拟环境 对电脑稍微有点常识的朋友相信都玩过,比如VMware,virtualbox,或者你用电脑端的模拟器玩手机端的游戏也是一样,其实就是一个假的空间,在Python这里,虚拟环境就 ...

  9. c/c++ 模板 类型推断

    模板类型的推断 下面的函数f是个模板函数,typename T.下表是,根据调用测的实参,推断出来的T的类型. 请注意下表的红字部分, f(T&& t)看起来是右值引用,但其实它会根据 ...

  10. Carthage入门篇-安装和使用

    在iOS开发过程中,用到最多的三方库管理工具也许是Cocoapods.Cocoapods会自动为你创建一个workspace,然后自动将你要用到的三方库集成到Project中,而整个过程,你只需要对P ...