There is a room with n lights which are turned on initially and 4 buttons on the wall. After performing exactly m unknown operations towards buttons, you need to return how many different kinds of status of the n lights could be.

Suppose n lights are labeled as number [1, 2, 3 ..., n], function of these 4 buttons are given below:

  1. Flip all the lights.
  2. Flip lights with even numbers.
  3. Flip lights with odd numbers.
  4. Flip lights with (3k + 1) numbers, k = 0, 1, 2, ...

Example 1:

Input: n = 1, m = 1.
Output: 2
Explanation: Status can be: [on], [off]

Example 2:

Input: n = 2, m = 1.
Output: 3
Explanation: Status can be: [on, off], [off, on], [off, off]

Example 3:

Input: n = 3, m = 1.
Output: 4
Explanation: Status can be: [off, on, off], [on, off, on], [off, off, off], [off, on, on].

Note: n and m both fit in range [0, 1000].

这道题是之前那道Bulb Switcher的拓展,但是关灯的方式改变了。现在有四种关灯方法,全关,关偶数灯,关奇数灯,关3k+1的灯。现在给我们n盏灯,允许m步操作,问我们总共能组成多少种不同的状态。博主开始想,题目没有让列出所有的情况,而只是让返回总个数。那么博主觉得应该不能用递归的暴力破解来做,一般都是用DP来做啊。可是想了半天也没想出递推公式,只得作罢。只好去参考大神们的做法,发现这道题的结果并不会是一个超大数,最多情况只有8种。转念一想,也是,如果结果是一个超大数,一般都会对一个超大数10e7来取余,而这道题并没有,所以是一个很大的hint,只不过博主没有get到。博主应该多列几种情况的,说不定就能找出规律。下面先来看一种暴力解法,首先我们先做一个小小的优化,我们来分析四种情况:

第一种情况:789101112131415,...

第二种情况:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,...

第三种情况:,2,,4,,6,7,8,9,10,11,12,,14,15,...

第四种情况:1,2,3,4,5,6,7,8,9,10,11,12,,14,15,...

通过观察上面的数组,我们可以发现以6个为1组,都是重复的pattern,那么实际上我们可以把重复的pattern去掉而且并不会影响结果。如果n大于6,我们则对其取余再加上6,新的n跟使用原来的n会得到同样的结果,但这样降低了我们的计算量。

下面我们先来生成n个1,这里1表示灯亮,0表示灯灭,然后我们需要一个set来记录已经存在的状态,用一个queue来辅助我们的BFS运算。我们需要循环m次,因为要操作m次,每次开始循环之前,先统计出此时queue中数字的个数len,然后进行len次循环,这就像二叉树中的层序遍历,必须上一层的结点全部遍历完了才能进入下一层,当然,在每一层开始前,我们都需要情况集合s,这样每个操作之间才不会互相干扰。然后在每层的数字循环中,我们取出队首状态,然后分别调用四种方法,突然感觉,这很像迷宫遍历问题,上下左右四个方向,周围四个状态算出来,我们将不再集合set中的状态加入queue和集合set。当m次操作遍历完成后,队列queue中状态的个数即为所求,参见代码如下:

解法一:

class Solution {
public:
int flipLights(int n, int m) {
n == (n <= ) ? n : (n % + );
int start = ( << n) - ;
unordered_set<int> s;
queue<int> q{{start}};
for (int i = ; i < m; ++i) {
int len = q.size();
s.clear();
for (int k = ; k < len; ++k) {
int t = q.front(); q.pop();
vector<int> next{flipAll(t, n), flipEven(t, n), flipOdd(t, n), flip3k1(t, n)};
for (int num : next) {
if (s.count(num)) continue;
q.push(num);
s.insert(num);
}
}
}
return q.size();
} int flipAll(int t, int n) {
int x = ( << n) - ;
return t ^ x;
} int flipEven(int t, int n) {
for (int i = ; i < n; i += ) {
t ^= ( << i);
}
return t;
} int flipOdd(int t, int n) {
for (int i = ; i < n; i += ) {
t ^= ( << i);
}
return t;
} int flip3k1(int t, int n) {
for (int i = ; i < n; i += ) {
t ^= ( << i);
}
return t;
}
};

上面那个方法虽然正确,但是有些复杂了,由于这道题最多只有8中情况,所以很适合分情况来讨论:

- 当m和n其中有任意一个数是0时,返回1

- 当n = 1时

只有两种情况,0和1

- 当n = 2时,

这时候要看m的次数,如果m = 1,那么有三种状态 00,01,10

当m > 1时,那么有四种状态,00,01,10,11

- 当m = 1时,

此时n至少为3,那么我们有四种状态,000,010,101,011

- 当m = 2时,

此时n至少为3,我们有七种状态:111,101,010,100,000,001,110

- 当m > 2时,

此时n至少为3,我们有八种状态:111,101,010,100,000,001,110,011

解法二:

class Solution {
public:
int flipLights(int n, int m) {
if (n == || m == ) return ;
if (n == ) return ;
if (n == ) return m == ? : ;
if (m == ) return ;
return m == ? : ;
}
};

下面这种简洁到变态的方法是史蒂芬大神观察规律得到的,他自己也在帖子中说不清为啥这样可以,但是就是叼,贴上来纯属娱乐吧~

解法三:

class Solution {
public:
int flipLights(int n, int m) {
n = min(n, );
return min( << n, + m * n);
}
};

类似题目:

Bulb Switcher

参考资料:

https://discuss.leetcode.com/topic/102022/c-concise-code-o-1

https://discuss.leetcode.com/topic/102395/2-short-lines-simple-formula

https://discuss.leetcode.com/topic/102227/short-and-clean-java-o-1-solution

https://discuss.leetcode.com/topic/102107/easy-to-understand-java-bfs-solution-o-m

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Bulb Switcher II 灯泡开关之二的更多相关文章

  1. [LeetCode] Bulb Switcher 灯泡开关

    There are n bulbs that are initially off. You first turn on all the bulbs. Then, you turn off every ...

  2. LC 672. Bulb Switcher II

    There is a room with n lights which are turned on initially and 4 buttons on the wall. After perform ...

  3. [Swift]LeetCode672. 灯泡开关 Ⅱ | Bulb Switcher II

    There is a room with n lights which are turned on initially and 4 buttons on the wall. After perform ...

  4. 【LeetCode】672. Bulb Switcher II 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  5. [LeetCode] Flip Game II 翻转游戏之二

    You are playing the following Flip Game with your friend: Given a string that contains only these tw ...

  6. [Leetcode] 第319题 灯泡开关

    一.题目描述 初始时有 n 个灯泡关闭. 第 1 轮,你打开所有的灯泡. 第 2 轮,每两个灯泡你关闭一次. 第 3 轮,每三个灯泡切换一次开关(如果关闭则开启,如果开启则关闭).第 i 轮,每 i  ...

  7. [LeetCode] Word Pattern II 词语模式之二

    Given a pattern and a string str, find if str follows the same pattern. Here follow means a full mat ...

  8. [LeetCode] Paint House II 粉刷房子之二

    There are a row of n houses, each house can be painted with one of the k colors. The cost of paintin ...

  9. [LeetCode] Ugly Number II 丑陋数之二

    Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...

随机推荐

  1. 基于node写了个工具,可以在线制作“sorry,为所欲为”的 GIF(开源)

    SnailDev.GifMaker 一个生成gif并添加自定义字幕的工具 client 微信小程序 server nodejs + express 欢迎 star&fork 如果您有好的com ...

  2. CSS2Properties doesn't have an indexed property setter for '0'

    使用React时,发现chrome浏览器没事,firefox火狐浏览器报了一个CSS2Properties doesn't have an indexed property setter for '0 ...

  3. Software Engineering-HW2

    title: Software Engineering-HW2 date: 2017-09-21 10:35:47 tags: HW --- 题目描述 从<构建之法>第一章的 " ...

  4. Alpha阶段小结

    1 团队的源码仓库地址 https://github.com/WHUSE2017/MyGod 2 Alpha过程回顾 2.1 团队项目预期 有一个可视化的安卓APP,实现二手交易基本功能.预期的典型用 ...

  5. 2018上c语言第0次作业

    随笔: 1.翻阅邹欣老师博客关于师生关系博客,并回答下列问题,每个问题的答案不少于500字: (1)最理想的师生关系是健身教练和学员的关系,在这种师生关系中你期望获得来自老师的哪些帮助? 答:对此问题 ...

  6. ios中录音功能的实现AudioSession的使用

    这个星期我完成了一个具有基本录音和回放的功能,一开始也不知道从何入手,也查找了很多相关的资料.与此同时,我也学会了很多关于音频方面的东西,这也对后面的录音配置有一定的帮助.其中参照了<iPhon ...

  7. Xen Server虚拟机数据恢复的方法和数据恢复过程

    在服务器运行过程中如果出现意外情况突然断电很容易引起服务器故障,服务器中的硬件设备损坏可以修复或者购买,但是服务器中的数据一旦发生故障丢失,对于企业来说将是不可估量的损失.那么服务器数据一旦丢失就除了 ...

  8. JAVA_SE基础——66.StringBuffer类 ③

    如果需要频繁修改字符串 的内容,建议使用字符串缓冲 类(StringBuffer). StringBuffer 其实就是一个存储字符 的容器. 容器的具备 的行为 常用方法 String  增加 ap ...

  9. Spring+Hibernate+Struts(SSH)框架整合

    SSH框架整合 前言:有人说,现在还是流行主流框架,SSM都出来很久了,更不要说SSH.我不以为然.现在许多公司所用的老项目还是ssh,如果改成流行框架,需要成本.比如金融IT这一块,数据库dao层还 ...

  10. Mego(06) - 关系数据库建模

    框架中提供了多种数据注释以便可以全面的描述数据库结构特性. 自增列 可以使用注释声明指定列是数据库自增列,同时能指定自增的起始及步长. public class Blog { [Identity(, ...