2015

题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\)


\(ij\)都爆int了....

一开始想容斥一下用\(d(i)\)和\(d(j)\)算\(d(ij)\),发现不行...

然后翻题解看到了一步好神的转化:

\[d(nm) = \sum_{i\mid n} \sum_{j\mid m} [gcd(i,j)=1]
\]

晚上再补吧还是没拿草稿纸...




补:

\(Proof.\)

  • 首先注意约数个数 相同的算一个

    约数个数公式\(\prod (a_i+1)\)

    考虑一个质因子,\(p^x,p^y \rightarrow p^x p^y\)

    \(x+y+1\)对应了\(gcd(p^x, 1)...gcd(1, 1)...gcd(1,p^y)\)

    质因子相互独立,乘起来


然后愉♂悦的套路推♂倒

\[\begin{align*}
\sum_{i=1}^n \sum_{j=1}^m d(ij) &= \sum_{i=1}^n \sum_{j=1}^m \sum_{x\mid i} \sum_{y\mid j} [gcd(x,y)=1]\\
先枚举约数,交换i,j\ x,y\\
&=\sum_{i=1}^n \sum_{j=1}^m \sum_{d\mid i,d\mid j}\mu(d) \frac{n}{i} \frac{m}{i}\\
&=\sum_{d=1}^n \mu(d)\sum_{i=1}^\frac{n}{i} \sum_{j=1}^\frac{m}{i} \frac{n}{id}\frac{m}{jd}\\
&=\sum_{d=1}^n \mu(d) f(\frac{n}{id})f(\frac{m}{jd})\\
\end{align*}
\]

问题就是\(f(n)=\sum_{i=1}^n\frac{n}{i}\)怎么求了

可以n根n预处理...

更巧妙的做法是,发现\(f\)就是\(d\)的前缀和,因为\(\frac{n}{i}\)表示的就是\(1..n\)有几个i的倍数


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=5e4+5;
typedef long long ll;
#define pii pair<int, int>
#define MP make_pair
#define fir first
#define sec second
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} int n, m;
int notp[N], p[N], mu[N]; ll f[N]; pii lp[N];
void sieve(int n) {
mu[1] = 1; f[1] = 1;
for(int i=2; i<=n; i++) {
if(!notp[i]) p[++p[0]] = i, mu[i] = -1, f[i] = 2, lp[i] = MP(i, 1);
for(int j=1; j<=p[0] && i*p[j]<=n; j++) {
int t = i*p[j];
notp[t] = 1;
if(i%p[j] == 0) {
mu[t] = 0;
lp[t] = MP(p[j], lp[i].sec + 1);
f[t] = f[i] / (lp[i].sec + 1) * (lp[t].sec + 1);
break;
}
mu[t] = -mu[i];
lp[t] = MP(p[j], 1);
f[t] = f[i] * (lp[t].sec + 1);
}
}
for(int i=1; i<=n; i++) mu[i] += mu[i-1], f[i] += f[i-1];
}
ll cal(int n, int m) {
ll ans=0; int r;
for(int i=1; i<=n; i=r+1) {
r = min(n/(n/i), m/(m/i));
ans += (mu[r] - mu[i-1]) * f[n/i] * f[m/i];
}
return ans;
}
int main() {
//freopen("in","r",stdin);
sieve(N-1);
int T=read();
while(T--){
n=read(); m=read();
if(n>m) swap(n, m);
printf("%lld\n",cal(n, m));
}
}

BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]的更多相关文章

  1. BZOJ.3994.[SDOI2015]约数个数和(莫比乌斯反演)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] \(Solution\) 有结论:\[d(nm)=\sum_{i|d}\sum_{j|d ...

  2. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  3. BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...

  4. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  5. BZOJ 3994: [SDOI2015]约数个数和

    3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 898  Solved: 619[Submit][Statu ...

  6. 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演

    [BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...

  7. ●BZOJ 3994 [SDOI2015]约数个数和

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3994 题解: 莫比乌斯反演 (先定义这样一个符号[x],如果x为true,则[x]=1,否则 ...

  8. 【刷题】BZOJ 3994 [SDOI2015]约数个数和

    Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T ...

  9. [SDOI2015]约数个数和 莫比乌斯反演

    ---题面--- 题解: 为什么SDOI这么喜欢莫比乌斯反演,,, 首先有一个结论$$d(ij) = \sum_{x|i}\sum_{y|j}[gcd(x, y) == 1]$$为什么呢?首先,可以看 ...

随机推荐

  1. HDU_4826

    Labyrinth Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  2. Centos7安装docker-compse踩过的坑

    一.概要 ​ 本文,我们介绍如何在centos7环境下安装docker-compose, 记录下安装过程步骤以及遇到的问题还有解决办法. 二.安装方式 1.官方安装方式 sudo curl -L ht ...

  3. [图像类名词解释][ RGB YUV HSV相关解释说明]

    一.概述 颜色通常用三个独立的属性来描述,三个独立变量综合作用,自然就构成一个空间坐标,这就是颜色空间.但被描述的颜色对象本身是客观的,不同颜色空间只是从不同的角度去衡量同一个对象.颜色空间按照基本机 ...

  4. [国嵌攻略][174][CGI快速入门-网页控制LED]

    CGI程序(Common Gate Way Interface) 在服务器外部供服务器调用的程序,CGI程序与服务器配合后能让服务器完成更强大的功能. 1.浏览器通过HTML表单或超链接请求指向一个C ...

  5. 用NPOI导出Excel,生成下拉列表、以及下拉联动列表(第1篇/共3篇)

    最近帅帅的小毛驴遇到一个很奇葩的需求: 导出Excel报表,而且还要带下拉框,更奇葩的是,下拉框还是联动的. 小毛驴一天比较忙,所以这等小事自然由我来为她分忧了.经历了两天,做了几种解决方案,最后完美 ...

  6. Oracle_索引

    Oracle_索引 索引类似字典的和课本目录,是为了加快对数据的搜索速度而设立的.索引有自己专门的存储空间,与表独立存放. 索引的作用:在数据库中用来加速对表的查询,通过使用快速路径访问方法快速定位数 ...

  7. Version 1.7.0_80 of the JVM is not suitable for this product.Version: 1.8 or greater is required.

    Eclipse启动失败,设置eclipse启动jdk有2种方法 第一种: 直接安装eclipse对应的jdk版本,并设置环境变量 第二种: 修改eclipse配置文件eclipse.ini 在plug ...

  8. 月薪20k以上的高级程序员需要学习哪些技术呢?

    课程内容: 源码分析.分布式架构.微服务架构.性能优化.团队协作效率.双十一项目实战 适用对象: 1-5年或更长软件开发经验,没有工作经验但基础非常扎实,对java工作机制,常用设计思想,常用java ...

  9. 为什么要进行URL编码

    我们都知道Http协议中参数的传输是"key=value"这种简直对形式的,如果要传多个参数就需要用“&”符号对键值对进行分割.如"?name1=value1&a ...

  10. NPM使用命令总结

    NPM使用命令总结 npm是一个node包管理和分发工具,已经成为了非官方的发布node模块(包)的标准.有了npm,可以很快的找到特定服务要使用的包,进行下载.安装以及管理已经安装的包. 1.npm ...