一、使用互斥锁

1、初始化互斥量

pthread_mutex_t mutex =PTHREAD_MUTEX_INITIALIZER;//静态初始化互斥量
int pthread_mutex_init(pthread_mutex_t*mutex,pthread_mutexattr_t*attr);//动态初始化互斥量
int pthread_mutex_destory(pthread_mutex_t*mutex);//撤销互斥量

不能拷贝互斥量变量,但可以拷贝指向互斥量的指针,这样就可以使多个函数或线程共享互斥量来实现同步。上面动态申请的互斥量需要动态的撤销。

2、加锁和解锁互斥量

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t*mutex);

当调用pthread_mutex_lock加锁互斥量时,如果此时互斥量已经被锁住,则调用线程将被阻塞。而pthread_mutex_trylock函数当调用互斥量已经被锁住时调用该函数将返回错误代码EBUSY。使用和信号量一样,先锁住互斥量再处理共享数据,最后解锁互斥量。
     针对上信号量中的示例进行修改得:

#include<pthread.h>
#include<stdio.h>
#include<semaphore.h>
#define NITERS 100000000
/*共享变量*/
unsigned int cnt = 0;
//sem_t mutex;
pthread_mutex_t mutex;
void *count(void *arg)
{
int i;
for(i=0;i<NITERS;i++)
{
pthread_mutex_lock(&mutex);
cnt++;
pthread_mutex_unlock(&mutex);
}
return arg;
}
int main()
{
pthread_t tid1,tid2;
int status;
pthread_mutex_init(&mutex,NULL); pthread_mutex_destroy(&mutex);
if(cnt!=(unsigned)NITERS*2)
printf("Boom!,cnt=%d\n",cnt);
else
printf("Ok cnt=%d\n",cnt);
return 0;
}

3、使用多个互斥量

使用多个互斥量可能造成死锁问题。如下:

线程1                                              线程2

pthread_mutex_lock(&mutex_a);                     pthread_mutex_lock(&mutex_b);

pthread_mutex_lock(&mutex_b);                     pthread_mutex_lock(&mutex_a);

当两个线程都完成第一步时,都无法完成第二步,将造成死锁。可以通过以下两种方法来避免死锁:

固定加锁层次:所有需要同时加锁互斥量A和互斥量B的代码,必须先加锁A再加锁B。

试加锁和回退:在锁住第一个互斥量后,使用pthread_mutex_trylock来加锁其他互斥量,如果失败则将已加锁的互斥量释放,并重新加锁。


二、使用读写锁

通过读写锁,可以对受保护的共享资源进行并发读取和独占写入。读写锁是可以在读取或写入模式下锁定的单一实体。要修改资源,线程必须首先获取互斥写锁。必须释放所有读锁之后,才允许使用互斥写锁。

1. 初始化和销毁:

#include <pthread.h>
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

同互斥量一样, 在释放读写锁占用的内存之前, 需要先通过pthread_rwlock_destroy对读写锁进行清理工作, 释放由init分配的资源.

2.加锁和解锁

读取读写锁中的锁 int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
读取非阻塞读写锁中的锁 int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
写入读写锁中的锁 int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
写入非阻塞读写锁中的锁 int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
解除锁定读写锁 int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

三、条件变量

假如某个线程需要等待系统处于某种状态下才能继续执行,Linux为了解决这种问题引入了条件变量这种线程同步对象,条件变量是用来通知共享数据状态信息的,等待条件变量总是返回锁住的互斥量,条件变量是与互斥量相关、也与互斥量保护的共享数据相关的信号机制。条件变量不提供互斥,需要一个互斥量来同步对共享数据的访问,这就是为什么在等待条件变量时必须指定一个互斥量。

1、创建和销毁条件变量

#include <pthread.h>
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
int pthread_cond_init(pthread_cond_t *restrict cond,const pthread_condattr_t *restrict attr);
int pthread_cond_destroy(pthread_cond_t *cond);

2、等待条件变量

#include <pthread.h>
int pthread_cond_timedwait(pthread_cond_t *restrict cond,pthread_mutex_t *restrict mutex,const struct timespec *restrict abstime);
int pthread_cond_wait(pthread_cond_t *restrict cond,pthread_mutex_t *restrict mutex);

两个函数的差别在于前者指定一个超时时间,在该时间内阻塞调用线程,并等待条件变量,如果规定时间内条件还没有发生,则函数返回。每个条件变量必须一个特定互斥量关联,当线程等待条件变量时,他必须将相关互斥量锁住。在阻塞线程之前,条件变量等待操作将解锁互斥量,而在重新返回线程之前,会在次锁住互斥量。

3、唤醒条件变量等待线程

#include <pthread.h>
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);

pthread_cond_signal将会激活等待线程中的一个;pthread_cond_broadcast将会激活所有的线程。另外请注意这两个函数也需要互斥量来保护。

UNIX环境高级编程——线程同步之互斥锁、读写锁和条件变量(小结)的更多相关文章

  1. UNIX环境高级编程——线程同步之互斥量

    互斥量(也称为互斥锁)出自POSIX线程标准,可以用来同步同一进程中的各个线程.当然如果一个互斥量存放在多个进程共享的某个内存区中,那么还可以通过互斥量来进行进程间的同步. 互斥量,从字面上就可以知道 ...

  2. UNIX环境高级编程——线程同步之条件变量以及属性

    条件变量变量也是出自POSIX线程标准,另一种线程同步机制.主要用来等待某个条件的发生.可以用来同步同一进程中的各个线程.当然如果一个条件变量存放在多个进程共享的某个内存区中,那么还可以通过条件变量来 ...

  3. UNIX环境高级编程——线程同步之读写锁以及属性

    读写锁和互斥量(互斥锁)很类似,是另一种线程同步机制,但不属于POSIX标准,可以用来同步同一进程中的各个线程.当然如果一个读写锁存放在多个进程共享的某个内存区中,那么还可以用来进行进程间的同步, 互 ...

  4. Unix 环境高级编程---线程创建、同步、

    一下代码主要实现了linux下线程创建的基本方法,这些都是使用默认属性的.以后有机会再探讨自定义属性的情况.主要是为了练习三种基本的线程同步方法:互斥.读写锁以及条件变量. #include < ...

  5. UNIX环境高级编程——线程属性

    pthread_attr_t 的缺省属性值 属性 值 结果 scope PTHREAD_SCOPE_PROCESS 新线程与进程中的其他线程发生竞争. detachstate PTHREAD_CREA ...

  6. UNIX环境高级编程——线程和fork

    当线程调用fork时,就为子进程创建了整个进程地址空间的副本.子进程通过继承整个地址空间的副本,也从父进程那里继承了所有互斥量.读写锁和条件变量的状态.如果父进程包含多个线程,子进程在fork返回以后 ...

  7. UNIX环境高级编程——线程私有数据

    线程私有数据(Thread-specific data,TSD):存储和查询与某个线程相关数据的一种机制. 在进程内的所有线程都共享相同的地址空间,即意味着任何声明为静态或外部变量,或在进程堆声明的变 ...

  8. UNIX环境高级编程——线程

    线程包含了表示进程内执行环境必需的信息,其中包括进程中标示线程的线程ID.一组寄存器值.栈.调度优先级和策略.信号屏蔽字.errno变量以及线程私有数据. 进程的所有信息对该进程的所有线程都是共享的, ...

  9. UNIX环境高级编程——线程和信号

    每个线程都有自己的信号屏蔽字,但是信号的处理是进程中所有线程共享的.这意味着尽管单个线程可以阻止某些信号,但当线程修改了与某个信号相关的处理行为以后,所有的线程都必须共享这个处理行为的改变.这样如果一 ...

随机推荐

  1. C++框架_之Qt的信号和槽的详解

    C++_之Qt的信号和槽的详解 1.概述 信号槽是 Qt 框架引以为豪的机制之一.所谓信号槽,实际就是观察者模式.当某个事件发生之后,比如,按钮检测到自己被点击了一下,它就会发出一个信号(signal ...

  2. log4cxx用环境变量设置输出文件名

    log4cxx用环境变量设置输出文件名(金庆的专栏 2016.12)利用环境变量,可以用同一个log4j.xml来配置多个相似进程,输出日志到不同文件.例如多个BaseApp进程使用同一个BaseAp ...

  3. Gi之(二)基础命令

    三个工作区域 使用Git之前,首先要弄清Git的三个管理区域,有助于理解Git的运行原理,以及每个Git命令对文件造成的影响. 对于任何一个文件,在本地的Git内部都有三种状态: l   已修改(mo ...

  4. eclipse properties 插件

    eclipse properties 插件安装,分享牛,分享牛原创.eclipse properties 编辑器使用. eclipse因为是原生的,可能集成的插件不多,需要自己手动安装.eclipse ...

  5. SMON功能-SMON_SCN_TIME字典基表

    SMON后台进程的作用还包括维护SMON_SCN_TIME基表. SMON_SCN_TIME基表用于记录过去时间段中SCN(system change number)与具体的时间戳(timestamp ...

  6. PGM:部分观测数据

    http://blog.csdn.net/pipisorry/article/details/52599451 基础知识 数据缺失的三种情形: 数据的似然和观测模型 Note: MLE中是将联合概率P ...

  7. github pages + Hexo + 域名绑定搭建个人博客增强版

    概述 前面我们用github pages + Hexo 搭建了一个简单版的个人博客系统,但是里面的内容单调,很多功能不够完善,所以我们需要对yelle 的主题进行优化和完善.基本搭建请访问:http: ...

  8. JavaMail API 概述

    JavaMail API提供了一种与平台无关和协议独立的框架来构建邮件和消息应用程序. JavaMail API提供了一组抽象类定义构成一个邮件系统的对象.它是阅读,撰写和发送电子信息的可选包(标准扩 ...

  9. Dynamics CRM2013 从外部系统取到CRM系统的用户头像

    CRM从2013开始引入了entityimage的概念,具体这个字段怎么设置的,图像是怎么上传的这里就不谈了.说实在的这玩意在项目中没啥用,所以也没去关注,直到最近遇到了个难题,要在外部系统去获取这个 ...

  10. RxJava(四) concatMap操作符用法详解

    欢迎转载,转载请标明出处: http://blog.csdn.net/johnny901114/article/details/51533282 本文出自:[余志强的博客] concatMap操作符的 ...