问题描述:

Eva loves to collect coins from all over the universe, including some other planets like Mars. One day she visited a universal shopping mall which could accept all kinds of coins as payments. However, there was a special requirement of the payment: for each bill, she could only use exactly two coins to pay the exact amount. Since she has as many as 105 coins with her, she definitely needs your help. You are supposed to tell her, for any given amount of money, whether or not she can find two coins to pay for it.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive numbers: N (<=105, the total number of coins) and M(<=103, the amount of money Eva has to pay). The second line contains N face values of the coins, which are all positive numbers no more than 500. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print in one line the two face values V1 and V2 (separated by a space) such that V1 + V2 = M and V1 <= V2. If such a solution is not unique, output the one with the smallest V1. If there is no solution, output "No Solution" instead.

Sample Input 1:

8 15
1 2 8 7 2 4 11 15

Sample Output 1:

4 11

Sample Input 2:

7 14
1 8 7 2 4 11 15

Sample Output 2:

No Solution

解法描述:


本题可看把需要支付的总额看做背包,每个钱币当做需要放进背包中的物品,钱币的重量和价值均为钱币面额,所以这是一个典型的01背包问题,用动态规划方法依次把各个钱币加入解法中,计算每种总额能拼凑出的最大价值。

代码

 #include<algorithm>
#include<iostream>
using namespace std; int coins[] = { };
int n, m;
int dp[] = { };
int ch[][] = { }; //ch[n][m]记录每次更新最大价值时,是否选择新加入的钱币 bool cmp(int a, int b) {
return a > b;
} int main() {
cin >> n >> m;
for (int i = ; i < n; i++)
{
cin >> coins[i];
}
sort(coins, coins + n, cmp); //对钱币从大到小排序,因为要输出最小钱币的方案
for (int i = ; i < n; i++)
{
for (int j = m; j >= ; j--)
{
if (j >= coins[i]) {
if (dp[j] <= dp[j - coins[i]] + coins[i]) {
ch[i][j] = ; //若选择了新加入的钱币,则ch[n][m]置为1
dp[j] = dp[j - coins[i]] + coins[i];
}
}
}
}
if (dp[m] != m) { //m总额下的最大价值不是m,则无解决方案
cout << "No Solution" << endl;
}
else {
for (int i = n - ; i >= ; i--) //从最小的钱币开始倒序遍历
{
if (ch[i][m]) { //若该钱币在拼凑方案中,则总额变为m-coins[i]
m -= coins[i];
cout << coins[i];
if (m == ) {
cout << endl;
}
else {
cout << " ";
}
}
}
}
return ;
}

PAT1048. Find Coins(01背包问题动态规划解法)的更多相关文章

  1. c语言数据结构:01背包问题-------动态规划

    两天的时间都在学习动态规划:小作业(01背包问题:) 数据结构老师布置的这个小作业还真是让人伤头脑,自己实在想不出来了便去网上寻找讲解,看到一篇不错的文章: http://www.cnblogs.co ...

  2. 0-1背包问题——动态规划求解【Python】

    动态规划求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 动态规划核心:计算并存储小问题的最优解,并将这些最 ...

  3. 【C/C++】01背包问题/动态规划

    按小蓝书上写的大数据情况下没过,按解答区一个大佬的修改了过了 #include <bits/stdc++.h> using namespace std; class Solution { ...

  4. ACM1881 01背包问题应用

    01背包问题动态规划应用 acm1881毕业bg 将必须离开的时间限制看作背包容量,先将他们由小到大排序,然后在排完序的数组中对每个实例都从它的时间限制开始(背包容量)到它的延长时间进行遍历: #in ...

  5. python实现算法: 多边形游戏 数塔问题 0-1背包问题 快速排序

    去年的算法课挂了,本学期要重考,最近要在这方面下点功夫啦! 1.多边形游戏-动态规划 问题描述: 多边形游戏是一个单人玩的游戏,开始时有一个由n个顶点构成的多边形.每个顶点被赋予一个整数值, 每条边被 ...

  6. 01背包问题(dfs+剪枝)

    01背包问题 dfs解法 #include <iostream> #include <cstring> #include <algorithm> #include ...

  7. 01背包问题(动态规划)python实现

    01背包问题(动态规划)python实现 在01背包问题中,在选择是否要把一个物品加到背包中.必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比較,这样的方式形成的问题导致了很多重叠子问题, ...

  8. 动态规划入门-01背包问题 - poj3624

    2017-08-12 18:50:13 writer:pprp 对于最基础的动态规划01背包问题,都花了我好长时间去理解: poj3624是一个最基本的01背包问题: 题意:给你N个物品,给你一个容量 ...

  9. 动态规划专题 01背包问题详解 HDU 2546 饭卡

    我以此题为例,详细分析01背包问题,希望该题能够为大家对01背包问题的理解有所帮助,对这篇博文有什么问题可以向我提问,一同进步^_^ 饭卡 Time Limit: 5000/1000 MS (Java ...

随机推荐

  1. 为wampserver 添加新版本php支持

    1.1.  停止WAMP服务器. 2.下载要安装的PHP版本.下载Window版本的ZIP包啦:http://windows.php.net.解压到 Wamp的安装目录\bin\php\php7.2. ...

  2. Java中常见数据结构List之LinkedList

    二,LinkedList 1, linkedList底层数据结构 linkedList底层是一个双向链表 2,LinkedList和ArrayList的对比 1.顺序插入速度ArrayList会比较快 ...

  3. 记一次线上Curator使用过程JVM栈溢出解决

       为了同学们看起来一目了,特按如下思路进行讲解. 1.出现的场景    2.分析及解决的过程    3.总结 最近公司要使用zookeeper做配置管理(后面简称ZK),然后自己就提前用虚拟机进行 ...

  4. MongoDB起步

    1.Mongodb基本概念和SQL的区别:SQL术语        MongoDB术语database    databasetable        collectionrow        doc ...

  5. Angular组件——父子组件通讯

    Angular组件间通讯 组件树,1号是根组件AppComponent. 组件之间松耦合,组件之间知道的越少越好. 组件4里面点击按钮,触发组件5的初始化逻辑. 传统做法:在按钮4的点击事件里调用组件 ...

  6. Servlet的三个域对象

    我们在开发javaweb项目的时候,经常会遇到jsp和Servet之间互相传值,既然有传值,就要有对象来传,这里先说Servlet的三大域对象,request,session,application他 ...

  7. susmote个人网站博客论坛(TexTec | 关注互联网技术,传播极客精神)

    网站地址 www.susmote.com www.textec.club 欢迎您的访问

  8. Mycat 分片规则详解--单月小时分片

    实现方式:单月内按照小时拆分,最小粒度是小时,一天最多可以有24个分片,最少1个分片,下个月从头开始循环 优点:使数据按照小时来进行分时存储,颗粒度比日期(天)分片要小,适用于数据采集类存储分片 缺点 ...

  9. poj-1146 ID codes

    Description It is 2084 and the year of Big Brother has finally arrived, albeit a century late. In or ...

  10. 深度学习之TensorFlow构建神经网络层

    深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可 ...