矩阵处理

1、矩阵的内存分配与释放

(1) 总体上:

OpenCV 使用C语言来进行矩阵操作。不过实际上有很多C++语言的替代方案可以更高效地完成。

在OpenCV中向量被当做是有一个维数为1的N维矩阵.

矩阵按行-行方式存储,每行以4字节(32位)对齐.

(2) 为新矩阵分配内存:

CvMat* cvCreateMat(int rows, int cols, int type);

type: 矩阵元素类型.

按CV_<bit_depth>(S|U|F)C<number_of_channels> 方式指定. 例如: CV_8UC1 、CV_32SC2.

示例:

CvMat* M = cvCreateMat(4,4,CV_32FC1);

(3) 释放矩阵内存:

CvMat* M = cvCreateMat(4,4,CV_32FC1);

cvReleaseMat(&M);

(4) 复制矩阵:

CvMat* M1 = cvCreateMat(4,4,CV_32FC1);

CvMat* M2;

M2=cvCloneMat(M1);

(5) 初始化矩阵:

double a[] = { 1, 2, 3, 4,

5, 6, 7, 8,

9, 10, 11, 12 };

CvMat Ma=cvMat(3, 4, CV_64FC1, a);

//等价于:

CvMat Ma;

cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a);

(6) 初始化矩阵为单位矩阵:

CvMat* M = cvCreateMat(4,4,CV_32FC1);

cvSetIdentity(M); // does not seem to be working properl

2、访问矩阵元素

(1) 假设需要访问一个2D浮点型矩阵的第(i, j)个单元.

(2) 间接访问:

cvmSet(M,i,j,2.0); // Set M(i,j)

t = cvmGet(M,i,j); // Get M(i,j)

(3) 直接访问(假设矩阵数据按4字节行对齐):

CvMat* M = cvCreateMat(4,4,CV_32FC1);

int n = M->cols;

float *data = M->data.fl;

data[i*n+j] = 3.0;

(4) 直接访问(当数据的行对齐可能存在间隙时 possible alignment gaps):

CvMat* M = cvCreateMat(4,4,CV_32FC1);

int step = M->step/sizeof(float);

float *data = M->data.fl;

(data+i*step)[j] = 3.0;

(5) 对于初始化后的矩阵进行直接访问:

double a[16];

CvMat Ma = cvMat(3, 4, CV_64FC1, a);

a[i*4+j] = 2.0; // Ma(i,j)=2.0;

3、矩阵/向量运算

(1) 矩阵之间的运算:

CvMat *Ma, *Mb, *Mc;

cvAdd(Ma, Mb, Mc); // Ma+Mb -> Mc

cvSub(Ma, Mb, Mc); // Ma-Mb -> Mc

cvMatMul(Ma, Mb, Mc); // Ma*Mb -> Mc

(2) 矩阵之间的元素级运算:

CvMat *Ma, *Mb, *Mc;

cvMul(Ma, Mb, Mc); // Ma.*Mb -> Mc

cvDiv(Ma, Mb, Mc); // Ma./Mb -> Mc

cvAddS(Ma, cvScalar(-10.0), Mc); // Ma.-10 -> Mc

(3) 向量乘积:

double va[] = {1, 2, 3};

double vb[] = {0, 0, 1};

double vc[3];

CvMat Va=cvMat(3, 1, CV_64FC1, va);

CvMat Vb=cvMat(3, 1, CV_64FC1, vb);

CvMat Vc=cvMat(3, 1, CV_64FC1, vc);

double res=cvDotProduct(&Va,&Vb); // 向量点乘: Va . Vb -> res

cvCrossProduct(&Va, &Vb, &Vc); // 向量叉乘: Va x Vb -> Vc

注意在进行叉乘运算时,Va, Vb, Vc 必须是仅有3个元素的向量.

(4) 单一矩阵的运算:

CvMat *Ma, *Mb;

cvTranspose(Ma, Mb); // 转置:transpose(Ma) -> Mb (注意转置阵不能返回给Ma本身)

CvScalar t = cvTrace(Ma); // 迹:trace(Ma) -> t.val[0]

double d = cvDet(Ma); // 行列式:det(Ma) -> d

cvInvert(Ma, Mb); // 逆矩阵:inv(Ma) -> Mb

(5) 非齐次线性方程求解:

CvMat* A = cvCreateMat(3,3,CV_32FC1);

CvMat* x = cvCreateMat(3,1,CV_32FC1);

CvMat* b = cvCreateMat(3,1,CV_32FC1);

cvSolve(&A, &b, &x); // solve (Ax=b) for x

(6) 特征值与特征向量 (矩阵为方阵):

CvMat* A = cvCreateMat(3,3,CV_32FC1);

CvMat* E = cvCreateMat(3,3,CV_32FC1);

CvMat* l = cvCreateMat(3,1,CV_32FC1);

cvEigenVV(A, E, l); // l = A 的特征值(递减顺序)

//
E = 对应的特征向量 (行向量)

(7) 奇异值分解(SVD):====

CvMat* A = cvCreateMat(3,3,CV_32FC1);

CvMat* U = cvCreateMat(3,3,CV_32FC1);

CvMat* D = cvCreateMat(3,3,CV_32FC1);

CvMat* V = cvCreateMat(3,3,CV_32FC1);

cvSVD(A, D, U, V, CV_SVD_U_T|CV_SVD_V_T); // A = U D V^T

标志位使矩阵U或V按转置形式返回 (若不转置可能运算出错).

OpenCV矩阵运算的更多相关文章

  1. opencv矩阵运算(2)

    简单介绍 本篇承接上一篇.继续opencv下矩阵计算的函数使用. 计算矩阵的逆 注意:矩阵A是可逆矩阵的充分必要条件是行列式detA不等于0. 详细代码 double x[3][3] = {{1, 2 ...

  2. 第一周:读取XML深度数据并将其重建为三维点云

    本周主要任务:学习PCL点云库,掌握利用PCL对点云处理的方法 任务时间:2014年9月1日-2014年9月7日 任务完成情况:完成了读取单幅xml深度数据,并重建三维点云并显示 任务涉及基本方法: ...

  3. opencv中相关的矩阵运算

    一.矩阵Mat I,img,I1,I2,dst,A,B;double k,alpha;Scalar s;1.加法I=I1+I2;//等同add(I1,I2,I);add(I1,I2,dst,mask, ...

  4. opencv中Mat与IplImage,CVMat类型之间转换

    opencv中对图像的处理是最基本的操作,一般的图像类型为IplImage类型,但是当我们对图像进行处理的时候,多数都是对像素矩阵进行处理,所以这三个类型之间的转换会对我们的工作带来便利. Mat类型 ...

  5. OpenCV MAT基本图像容器

    参考博客: OpenCv中cv::Mat和IplImage,CvMat之间的转换 Mat - 基本图像容器 Mat类型较CvMat和IplImage有更强的矩阵运算能力,支持常见的矩阵运算(参照Mat ...

  6. C++矩阵运算库推荐

    最近在几个地方都看到有人问C++下用什么矩阵运算库比较好,顺便做了个调查,做一些相关的推荐吧.主要针对稠密矩阵,有时间会再写一个稀疏矩阵的推荐. Armadillo:C++下的Matlab替代品 地址 ...

  7. 图像储存容器Mat[OpenCV 笔记11]

    IplImage 与 Mat IplImage是OpenCV1中的图像存储结构体,基于C接口创建.在退出之前必须release,否则就会造成内存泄露.在一些只能使用C语言的嵌入式系统中,不得不使用. ...

  8. OpenCV(2)-Mat数据结构及访问Mat中像素

    Mat数据结构 一开始OpenCV是基于C语言的,在比较早的教材例如<学习OpenCV>中,讲解的存储图像的数据结构还是IplImage,这样需要手动管理内存.现在存储图像的基本数据结构是 ...

  9. OpenCV 2 Computer Vision Application Programming Cookbook读书笔记

    ### `highgui`的常用函数: `cv::namedWindow`:一个命名窗口 `cv::imshow`:在指定窗口显示图像 `cv::waitKey`:等待按键 ### 像素级 * 在灰度 ...

随机推荐

  1. github pages + Hexo + 域名绑定搭建个人博客增强版

    概述 前面我们用github pages + Hexo 搭建了一个简单版的个人博客系统,但是里面的内容单调,很多功能不够完善,所以我们需要对yelle 的主题进行优化和完善.基本搭建请访问:http: ...

  2. [django]urls.py 中重定向

    Django 1.5 有时候需要对一个链接直接重定向,比如首页啥的重定向到一个内容页等等,在views.py 中可以设定,如果没有参数啥的在urls.py 中设定更加方面 from django.vi ...

  3. 生活沉思录 via 哲理小故事

    本文转载:http://www.cnblogs.com/willick/p/3174803.html 1.小托蒂的悲剧 意大利小男孩托蒂,有一只十分奇怪的眼睛,因为从生理上看,这是一只完全正常的眼睛, ...

  4. 【移动开发】binder阻塞/非阻塞与单向/双向的问题

    The client thread calling transact is blocked by default until onTransact has finishedexecuting on t ...

  5. 如何使用excel画甘特图

    甘特图小伙伴们都非常的熟悉,首先小编简单的向各位小伙伴介绍一下什么是甘特图,甘特图内在思想简单,即以图示的方式通过活动列表和时间刻度形象地表示出任何特定项目的活动顺序与持续时间.基本是一条线条图,横轴 ...

  6. linu下C语言之BMP图片操作编程(下)

    前面提高了一个将BMP左转的程序,右转其实也是类似的操作,就不写了,这节,我们来实现,将一张BMP图进行灰度处理,代码贴上: #include <stdio.h> #include < ...

  7. 学习Tensorflow,使用源码安装

    PC上装好Ubuntu系统,我们一步一步来讲解如何使用源码安装tensorflow?(我的Ubuntu系统是15.10) 安装cuda 根据你的系统型号选择相应的cuda版本下载 https://de ...

  8. Android初级教程之内容提供者获取联系人信息

    内容提供折详细理论知识请参考之前的博文:http://blog.csdn.net/qq_32059827/article/details/51646513 这里新建了三个联系人信息,通过查看系统联系人 ...

  9. [GitHub]第七讲:GitHub issues

    文章转载自:http://blog.csdn.net/loadsong/article/details/51591701 Github 上的每个项目仓库,都有三套基础设置可供使用:一个是通过 Gith ...

  10. Hash冲突解决

    hash的冲突不可避免的 1.开放地址法 开放地执法有一个公式:Hi=(H(key)+di) MOD m i=1,2,-,k(k<=m-1) 其中,m为哈希表的表长.di 是产生冲突的时候的增量 ...