矩阵处理

1、矩阵的内存分配与释放

(1) 总体上:

OpenCV 使用C语言来进行矩阵操作。不过实际上有很多C++语言的替代方案可以更高效地完成。

在OpenCV中向量被当做是有一个维数为1的N维矩阵.

矩阵按行-行方式存储,每行以4字节(32位)对齐.

(2) 为新矩阵分配内存:

CvMat* cvCreateMat(int rows, int cols, int type);

type: 矩阵元素类型.

按CV_<bit_depth>(S|U|F)C<number_of_channels> 方式指定. 例如: CV_8UC1 、CV_32SC2.

示例:

CvMat* M = cvCreateMat(4,4,CV_32FC1);

(3) 释放矩阵内存:

CvMat* M = cvCreateMat(4,4,CV_32FC1);

cvReleaseMat(&M);

(4) 复制矩阵:

CvMat* M1 = cvCreateMat(4,4,CV_32FC1);

CvMat* M2;

M2=cvCloneMat(M1);

(5) 初始化矩阵:

double a[] = { 1, 2, 3, 4,

5, 6, 7, 8,

9, 10, 11, 12 };

CvMat Ma=cvMat(3, 4, CV_64FC1, a);

//等价于:

CvMat Ma;

cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a);

(6) 初始化矩阵为单位矩阵:

CvMat* M = cvCreateMat(4,4,CV_32FC1);

cvSetIdentity(M); // does not seem to be working properl

2、访问矩阵元素

(1) 假设需要访问一个2D浮点型矩阵的第(i, j)个单元.

(2) 间接访问:

cvmSet(M,i,j,2.0); // Set M(i,j)

t = cvmGet(M,i,j); // Get M(i,j)

(3) 直接访问(假设矩阵数据按4字节行对齐):

CvMat* M = cvCreateMat(4,4,CV_32FC1);

int n = M->cols;

float *data = M->data.fl;

data[i*n+j] = 3.0;

(4) 直接访问(当数据的行对齐可能存在间隙时 possible alignment gaps):

CvMat* M = cvCreateMat(4,4,CV_32FC1);

int step = M->step/sizeof(float);

float *data = M->data.fl;

(data+i*step)[j] = 3.0;

(5) 对于初始化后的矩阵进行直接访问:

double a[16];

CvMat Ma = cvMat(3, 4, CV_64FC1, a);

a[i*4+j] = 2.0; // Ma(i,j)=2.0;

3、矩阵/向量运算

(1) 矩阵之间的运算:

CvMat *Ma, *Mb, *Mc;

cvAdd(Ma, Mb, Mc); // Ma+Mb -> Mc

cvSub(Ma, Mb, Mc); // Ma-Mb -> Mc

cvMatMul(Ma, Mb, Mc); // Ma*Mb -> Mc

(2) 矩阵之间的元素级运算:

CvMat *Ma, *Mb, *Mc;

cvMul(Ma, Mb, Mc); // Ma.*Mb -> Mc

cvDiv(Ma, Mb, Mc); // Ma./Mb -> Mc

cvAddS(Ma, cvScalar(-10.0), Mc); // Ma.-10 -> Mc

(3) 向量乘积:

double va[] = {1, 2, 3};

double vb[] = {0, 0, 1};

double vc[3];

CvMat Va=cvMat(3, 1, CV_64FC1, va);

CvMat Vb=cvMat(3, 1, CV_64FC1, vb);

CvMat Vc=cvMat(3, 1, CV_64FC1, vc);

double res=cvDotProduct(&Va,&Vb); // 向量点乘: Va . Vb -> res

cvCrossProduct(&Va, &Vb, &Vc); // 向量叉乘: Va x Vb -> Vc

注意在进行叉乘运算时,Va, Vb, Vc 必须是仅有3个元素的向量.

(4) 单一矩阵的运算:

CvMat *Ma, *Mb;

cvTranspose(Ma, Mb); // 转置:transpose(Ma) -> Mb (注意转置阵不能返回给Ma本身)

CvScalar t = cvTrace(Ma); // 迹:trace(Ma) -> t.val[0]

double d = cvDet(Ma); // 行列式:det(Ma) -> d

cvInvert(Ma, Mb); // 逆矩阵:inv(Ma) -> Mb

(5) 非齐次线性方程求解:

CvMat* A = cvCreateMat(3,3,CV_32FC1);

CvMat* x = cvCreateMat(3,1,CV_32FC1);

CvMat* b = cvCreateMat(3,1,CV_32FC1);

cvSolve(&A, &b, &x); // solve (Ax=b) for x

(6) 特征值与特征向量 (矩阵为方阵):

CvMat* A = cvCreateMat(3,3,CV_32FC1);

CvMat* E = cvCreateMat(3,3,CV_32FC1);

CvMat* l = cvCreateMat(3,1,CV_32FC1);

cvEigenVV(A, E, l); // l = A 的特征值(递减顺序)

//
E = 对应的特征向量 (行向量)

(7) 奇异值分解(SVD):====

CvMat* A = cvCreateMat(3,3,CV_32FC1);

CvMat* U = cvCreateMat(3,3,CV_32FC1);

CvMat* D = cvCreateMat(3,3,CV_32FC1);

CvMat* V = cvCreateMat(3,3,CV_32FC1);

cvSVD(A, D, U, V, CV_SVD_U_T|CV_SVD_V_T); // A = U D V^T

标志位使矩阵U或V按转置形式返回 (若不转置可能运算出错).

OpenCV矩阵运算的更多相关文章

  1. opencv矩阵运算(2)

    简单介绍 本篇承接上一篇.继续opencv下矩阵计算的函数使用. 计算矩阵的逆 注意:矩阵A是可逆矩阵的充分必要条件是行列式detA不等于0. 详细代码 double x[3][3] = {{1, 2 ...

  2. 第一周:读取XML深度数据并将其重建为三维点云

    本周主要任务:学习PCL点云库,掌握利用PCL对点云处理的方法 任务时间:2014年9月1日-2014年9月7日 任务完成情况:完成了读取单幅xml深度数据,并重建三维点云并显示 任务涉及基本方法: ...

  3. opencv中相关的矩阵运算

    一.矩阵Mat I,img,I1,I2,dst,A,B;double k,alpha;Scalar s;1.加法I=I1+I2;//等同add(I1,I2,I);add(I1,I2,dst,mask, ...

  4. opencv中Mat与IplImage,CVMat类型之间转换

    opencv中对图像的处理是最基本的操作,一般的图像类型为IplImage类型,但是当我们对图像进行处理的时候,多数都是对像素矩阵进行处理,所以这三个类型之间的转换会对我们的工作带来便利. Mat类型 ...

  5. OpenCV MAT基本图像容器

    参考博客: OpenCv中cv::Mat和IplImage,CvMat之间的转换 Mat - 基本图像容器 Mat类型较CvMat和IplImage有更强的矩阵运算能力,支持常见的矩阵运算(参照Mat ...

  6. C++矩阵运算库推荐

    最近在几个地方都看到有人问C++下用什么矩阵运算库比较好,顺便做了个调查,做一些相关的推荐吧.主要针对稠密矩阵,有时间会再写一个稀疏矩阵的推荐. Armadillo:C++下的Matlab替代品 地址 ...

  7. 图像储存容器Mat[OpenCV 笔记11]

    IplImage 与 Mat IplImage是OpenCV1中的图像存储结构体,基于C接口创建.在退出之前必须release,否则就会造成内存泄露.在一些只能使用C语言的嵌入式系统中,不得不使用. ...

  8. OpenCV(2)-Mat数据结构及访问Mat中像素

    Mat数据结构 一开始OpenCV是基于C语言的,在比较早的教材例如<学习OpenCV>中,讲解的存储图像的数据结构还是IplImage,这样需要手动管理内存.现在存储图像的基本数据结构是 ...

  9. OpenCV 2 Computer Vision Application Programming Cookbook读书笔记

    ### `highgui`的常用函数: `cv::namedWindow`:一个命名窗口 `cv::imshow`:在指定窗口显示图像 `cv::waitKey`:等待按键 ### 像素级 * 在灰度 ...

随机推荐

  1. 搭建ejabberd集群

    搭建ejabberd集群(金庆的专栏 2016.8)以2台机器搭建一个ejabberd集群.2台机器都是外网一块网卡,内网另一块网卡.新建一个域名,添加2台机器的外网IP.分别用源码安装ejabber ...

  2. 23 服务的启动Demo2

    MainActivity.java package com.qf.day23_service_demo2; import android.app.Activity; import android.co ...

  3. BeanUtils制作自定义的转换器

    一般来说,BeanUtils自带的Converter基本上可以满足我们在开发过程中的使用了,然而很多时候我们还是需要自定义一些转换器. MyBean.java package beanutils; i ...

  4. 有两个序列a,b,大小都为n,序列元素的值是任意整数,无序。

    要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小. 例如: var a=[100,99,98,1,2, 3]; var b=[1, 2, 3, 4,5,40]. in ...

  5. iOS开发之自己封装的提示框(警告框)样式BHAlertView

    最近需要使用到提示框(警告框)进行信息的展示和提醒,所以进行了一个类的封装,想用Swift调用此OC文件,但是发现有些困难,所以暂时先把OC代码进行展示,随后再好好研究一下在Swift中的使用. 对于 ...

  6. UNIX网络编程——Socket通信原理和实践

    我们深谙信息交流的价值,那网络中进程之间如何通信,如我们每天打开浏览器浏览网页时,浏览器的进程怎么与web服务器通信的?当你用QQ聊天时,QQ进程怎么与服务器或你好友所在的QQ进程通信?这些都得靠so ...

  7. 【Unity Shaders】Alpha Test和Alpha Blending

    写在前面 关于alpha的问题一直是个比较容易摸不清头脑的事情,尤其是涉及到半透明问题的时候,总是不知道为什么A就遮挡了B,而B明明在A前面.这篇文章就总结一下我现在的认识~ Alpha Test和A ...

  8. 04 SimpleAdapter

    <span style="font-size:18px;">package com.fmyboke; import java.util.ArrayList; impor ...

  9. 如何在Cocos2D 1.0 中掩饰一个精灵(二)

    大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请告诉我,如果觉得不错请多多支持点赞.谢谢! hopy ;) 让我们开始吧 打开Xcode,从New Project中选择co ...

  10. Docker教程:使用docker配置python开发环境

    http://blog.csdn.net/pipisorry/article/details/50808034 Docker的安装和配置 [Docker教程:docker的安装] [Docker教程: ...