本文以 Hadoop 提供的分布式文件系统(HDFS)为例来进一步展开解析分布式存储服务架构设计的要点。

架构目标

任何一种软件框架或服务都是为了解决特定问题而产生的。还记得我们在 《分布式存储 - 概述》一文中描述的几个关注方面么?分布式文件系统属于分布式存储中的一种面向文件的数据模型,它需要解决单机文件系统面临的容量扩展和容错问题。

所以 HDFS 的架构设计目标就呼之欲出了:

  1. 面向超大文件或大量的文件数据集
  2. 自动检测局部的硬件错误并快速恢复

基于此目标,考虑应用场景出于简化设计和实现的目的,HDFS 假设了一种 write-once-read-many 的文件访问模型。这种一次写入并被大量读出的模型在现实中确实适应很多业务场景,架构设计的此类假设是合理的。正因为此类假设的存在,也限定了它的应用场景。

架构总揽

下面是一张来自官方文档的架构图:

从图中可见 HDFS 的架构包括三个部分,每个部分有各自清晰的职责划分。

  1. NameNode
  2. DataNode
  3. Client

从图中可见,HDFS 采用的是中心总控式架构,NameNode 就是集群的中心节点。

NameNode

NameNode 的主要职责是管理整个文件系统的元信息(Metadata),元信息主要包括:

  • File system namesapce

    HDFS 类似单机文件系统以目录树的形式组织文件,称为 file system namespace
  • Replication factor

    文件副本数,针对每个文件设置
  • Mapping of blocks to DataNodes

    文件块到数据节点的映射关系

在上面架构图中,指向 NameNode 的 Metadata ops 主要就是针对文件的创建、删除、读取和设置文件的副本数等操作,所以所有的文件操作都绕不过 NameNode。除此之外 NameNode 还负责管理 DataNode,如新的 DataNode 加入集群,旧的 DataNode 退出集群,在 DataNode 之间负载均衡文件数据块的分布等等。更多关于 NameNode 的设计实现分析,后面会单独成文详解。

DataNode

DataNode 的职责如下:

  • 存储文件块(block)
  • 服务响应 Client 的文件读写请求
  • 执行文件块的创建、删除和复制

从架构图上看到有个 Block ops 的操作箭头从 NameNode 指向 DataNode,会让人误以为 NameNode 会主动向 DataNode 发出指令调用。实际上 NameNode 从不调用 DataNode,仅仅是通过 DataNode 定期向 NameNode 发送心跳来携带回传的指令信息。

架构图上专门标记了 Rack1 和 Rack2,表明了 HDFS 在考虑文件数据块的多副本分布时针对机架感知作了专门设计,细节我们这里先不展开,更多关于 DataNode 的设计实现分析,后面会单独成文详解。

Client

考虑到 HDFS 交互过程的复杂性,所以特地提供了针特定编程语言的 Client 以简化使用。Client 的职责如下:

  • 提供面向应用编程语言的一致 API,简化应用编程
  • 改善访问性能

Client 之所以能够改善性能是因为针对读可以提供缓存(cache),针对写可以通过缓冲(buffer)批量方式,细节我们这里也先不展开,更多关于 Client 的设计实现分析,后面会单独成文详解。

总结

本来想在一篇文章里写完 HDFS 架构解析的,写着写着发现不太可能。作为分布式系统中最复杂的分布式存储类系统,每一个架构设计权衡的实现细节点,都值得好好推敲,一旦展开此文感觉就会长的没完没了,所以这里先总体过一下,针对每个部分的设计实现细节再以主题文章来详细解析。

参考

[1]Hadoop Documentation. HDFS Architecture.

[2]Robert Chansler, Hairong Kuang, Sanjay Radia, Konstantin Shvachko, and Suresh Srinivas. The Hadoop Distributed File System


下面是我自己开的一个微信公众号 [瞬息之间],除了写技术的文章、还有产品的、行业和人生的思考,希望能和更多走在这条路上同行者交流,有兴趣可关注一下,谢谢。

后端分布式系列:分布式存储-HDFS 架构解析的更多相关文章

  1. 后端分布式系列:分布式存储-HDFS NameNode 设计实现解析

    接前文 分布式存储-HDFS 架构解析,我们总体分析了 HDFS 架构的主要构成组件包括:NameNode.DataNode 和 Client.本文首先进一步解析 HDFS NameNode 的设计和 ...

  2. 后端分布式系列:分布式存储-HDFS 与 GFS 的设计差异

    「后端分布式系列」前面关于 HDFS 的一些文章介绍了它的整体架构和一些关键部件的设计实现要点. 我们知道 HDFS 最早是根据 GFS(Google File System)的论文概念模型来设计实现 ...

  3. HDFS 架构解析

    本文以 Hadoop 提供的分布式文件系统(HDFS)为例来进一步展开解析分布式存储服务架构设计的要点. 架构目标 任何一种软件框架或服务都是为了解决特定问题而产生的.还记得我们在 <分布式存储 ...

  4. 后端分布式系列:分布式存储-MySQL 数据库事务与复制

    好久没有写技术文章了,因为一直在思考 「后端分布式」这个系列到底怎么写才合适.最近基本想清楚了,「后端分布式」包括「分布式存储」和 「分布式计算」两大类.结合实际工作中碰到的问题,以寻找答案的方式来剖 ...

  5. 后端分布式系列:分布式存储-HDFS Client 设计实现解析

    前面对 HDFS NameNode 和 DataNode 的架构设计实现要点做了介绍,本文对 HDFS 最后一个主要构成组件 Client 做进一步解析. 流式读取 HDFS Client 为客户端应 ...

  6. 后端分布式系列:分布式存储-HDFS DataNode 设计实现解析

    前文分析了 NameNode,本文进一步解析 DataNode 的设计和实现要点. 文件存储 DataNode 正如其名是负责存储文件数据的节点.HDFS 中文件的存储方式是将文件按块(block)切 ...

  7. 后端分布式系列:分布式存储-HDFS 异常处理与恢复

    在前面的文章 <HDFS DataNode 设计实现解析>中我们对文件操作进行了描述,但并未展开讲述其中涉及的异常错误处理与恢复机制.本文将深入探讨 HDFS 文件操作涉及的错误处理与恢复 ...

  8. 从一般分布式设计看HDFS设计思想与架构

     要想深入学习HDFS就要先了解其设计思想和架构,这样才能继续深入使用HDFS或者深入研究源代码.懂得了"所以然"才能在实际使用中灵活运用.快速解决遇到的问题.下面这篇博文我们就先 ...

  9. [源码解析] 并行分布式框架 Celery 之架构 (1)

    [源码解析] 并行分布式框架 Celery 之架构 (1) 目录 [源码解析] 并行分布式框架 Celery 之架构 (1) 0x00 摘要 0x01 Celery 简介 1.1 什么是 Celery ...

随机推荐

  1. Gethub readme 撰写

    大标题=== 小标题----- #一级标题 ##二级标题 ###三级标题 ####四级标题 #####五级标题 ######六级标题 插入圆点* 昵称:果冻虾仁 * 别名:隔壁老王 * 英文名:Jel ...

  2. gulp填坑记(二)——gulp多张图片自动合成雪碧图

    为优化图片,减少请求会把拿到切好的图标图片,通过ps(或者其他工具)把图片合并到一张图里面,再通过css定位把对于的样式写出来引用的html里面,对于一些图片较多的项目,这个过程可能要花费我们一天的时 ...

  3. JSON.parse()在火狐中的BUG

      //用sessionStorage解决load页面刷新问题 { //sessionStorage.removeItem("loadInfo"); var loadInfo=de ...

  4. 指尖大冒险H5小游戏

    前些天看了一篇很赞的文章,又因为想学习phaser,所以有了这个案例,在线预览可以点下方链接. 本案例中,核心原理是按文章中所提到的内容制作,整体遵循"大道至简"的原则开发,其实是 ...

  5. 关于一些基础的Java问题的解答(六)

    26. ThreadPool用法与优势 ThreadPool即线程池,它是JDK1.5引入的Concurrent包中用于处理并发编程的工具.使用线程池有如下好处: 降低资源消耗:通过重复利用已创建的线 ...

  6. Socket网络编程详解

    一,socket的起源 socket一词的起源 在组网领域的首次使用是在1970年2月12日发布的文献IETF RFC33中发现的, 撰写者为Stephen Carr.Steve Crocker和Vi ...

  7. hive 存储,解析,处理json数据

    hive 处理json数据总体来说有两个方向的路走 1.将json以字符串的方式整个入Hive表,然后通过使用UDF函数解析已经导入到hive中的数据,比如使用LATERAL VIEW json_tu ...

  8. 深入浅出低功耗蓝牙(BLE)协议栈

    深入浅出低功耗蓝牙(BLE)协议栈 BLE协议栈为什么要分层?怎么理解蓝牙"连接"?如果蓝牙协议只有ATT没有GATT会发生什么? 协议栈框架 一般而言,我们把某个协议的实现代码称 ...

  9. Node.js 控制台

    稳定性: 4 - 冻结 {Object} 用于打印输出字符到 stdout 和 stderr.和多数浏览器提供的 console 对象函数一样,Node 也是输出到 stdout 和 stderr. ...

  10. 在Spring Boot中使用数据缓存

    春节就要到了,在回家之前要赶快把今年欠下的技术债还清.so,今天继续.Spring Boot前面已经预热了n篇博客了,今天我们来继续看如何在Spring Boot中解决数据缓存问题.本篇博客是以初识在 ...