剑指Offer——二叉树

前言

数据结构通常是编程面试中考察的重点。在参加面试之前,应聘者需要熟练掌握链表、树、栈、队列和哈希表等数据结构,以及它们的操作。本片博文主要讲解二叉树操作的相关知识,主要包括二叉树的建立、遍历方法的循环和递归写法。

二叉树是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树的形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。

二叉树的java实现

首先创建一棵二叉树如下图,然后对这颗二叉树进行遍历操作(遍历操作的实现分为递归实现和非递归实现),同时还提供一些方法如获取双亲结点、获取左孩子、右孩子等。

package cn.edu.ujn.nk;

import java.util.Stack;

/**
 * 二叉树的链式存储
 * @author WWX
 */
public class BinaryTree {  

    private TreeNode root=null;  

    public BinaryTree(){
        root=new TreeNode(1,"rootNode(A)");
    }  

    /**
     * 创建一棵二叉树
     * <pre>
     *           A
     *     B          C
     *  D     E            F
     *  </pre>
     * @param root
     * @author WWX
     */
    public void createBinTree(TreeNode root){
        TreeNode newNodeB = new TreeNode(2,"B");
        TreeNode newNodeC = new TreeNode(3,"C");
        TreeNode newNodeD = new TreeNode(4,"D");
        TreeNode newNodeE = new TreeNode(5,"E");
        TreeNode newNodeF = new TreeNode(6,"F");
        root.leftChild=newNodeB;
        root.rightChild=newNodeC;
        root.leftChild.leftChild=newNodeD;
        root.leftChild.rightChild=newNodeE;
        root.rightChild.rightChild=newNodeF;
    }  

    public boolean isEmpty(){
        return root==null;
    }  

    //树的高度
    public int height(){
        return height(root);
    }  

    //节点个数
    public int size(){
        return size(root);
    }  

    private int height(TreeNode subTree){
        if(subTree == null)
            return 0;	// 递归结束:空树高度为0
        else{
            int i = height(subTree.leftChild);
            int j = height(subTree.rightChild);
            return (i < j) ? (j + 1) : (i + 1);
        }
    }

    private int size(TreeNode subTree){
        if(subTree == null){
            return 0;
        }else{
            return 1 + size(subTree.leftChild) + size(subTree.rightChild);
        }
    }  

    //返回双亲结点
    public TreeNode parent(TreeNode element){
        return (root == null|| root == element) ? null : parent(root, element);
    }

    public TreeNode parent(TreeNode subTree,TreeNode element){
        if(subTree == null)
            return null;
        if(subTree.leftChild == element || subTree.rightChild == element)
            //返回父结点地址
            return subTree;
        TreeNode p;
        // 先在左子树中找,如果左子树中没有找到,才到右子树去找
        if((p = parent(subTree.leftChild, element)) != null)
            //递归在左子树中搜索
            return p;
        else
            //递归在右子树中搜索
            return parent(subTree.rightChild, element);
    }  

    public TreeNode getLeftChildNode(TreeNode element){
        return (element != null) ? element.leftChild : null;
    }  

    public TreeNode getRightChildNode(TreeNode element){
        return (element != null) ? element.rightChild : null;
    }  

    public TreeNode getRoot(){
        return root;
    }  

    //在释放某个结点时,该结点的左右子树都已经释放,
    //所以应该采用后续遍历,当访问某个结点时将该结点的存储空间释放
    public void destroy(TreeNode subTree){
        //删除根为subTree的子树
        if(subTree!=null){
            //删除左子树
            destroy(subTree.leftChild);
            //删除右子树
            destroy(subTree.rightChild);
            //删除根结点
            subTree=null;
        }
    }  

    public void traverse(TreeNode subTree){
        System.out.println("key:"+subTree.key+"--name:"+subTree.data);;
        traverse(subTree.leftChild);
        traverse(subTree.rightChild);
    }  

    //前序遍历
    public void preOrder(TreeNode subTree){
        if(subTree!=null){
            visted(subTree);
            preOrder(subTree.leftChild);
            preOrder(subTree.rightChild);
        }
    }  

    //中序遍历
    public void inOrder(TreeNode subTree){
        if(subTree!=null){
            inOrder(subTree.leftChild);
            visted(subTree);
            inOrder(subTree.rightChild);
        }
    }  

    //后续遍历
    public void postOrder(TreeNode subTree) {
        if (subTree != null) {
            postOrder(subTree.leftChild);
            postOrder(subTree.rightChild);
            visted(subTree);
        }
    }  

    //前序遍历的非递归实现
    public void nonRecPreOrder(TreeNode p){
        Stack<TreeNode> stack=new Stack<TreeNode>();
        TreeNode node=p;
        while(node!=null||stack.size()>0){
            while(node!=null){
                visted(node);
                stack.push(node);
                node=node.leftChild;
            }
            while(stack.size()>0){
                node=stack.pop();
                node=node.rightChild;
            }
        }
    }  

    //中序遍历的非递归实现
    public void nonRecInOrder(TreeNode p){
        Stack<TreeNode> stack =new Stack<BinaryTree.TreeNode>();
        TreeNode node =p;
        while(node!=null||stack.size()>0){
            //存在左子树
            while(node!=null){
                stack.push(node);
                node=node.leftChild;
            }
            //栈非空
            if(stack.size()>0){
                node=stack.pop();
                visted(node);
                node=node.rightChild;
            }
        }
    }  

    //后序遍历的非递归实现
    public void noRecPostOrder(TreeNode p){
        Stack<TreeNode> stack=new Stack<BinaryTree.TreeNode>();
        TreeNode node =p;
        while(p!=null){
            //左子树入栈
            for(;p.leftChild!=null;p=p.leftChild){
                stack.push(p);
            }
            //当前结点无右子树或右子树已经输出
            while(p!=null&&(p.rightChild==null||p.rightChild==node)){
                visted(p);
                //纪录上一个已输出结点
                node =p;
                if(stack.empty())
                    return;
                p=stack.pop();
            }
            //处理右子树
            stack.push(p);
            p=p.rightChild;
        }
    }
    public void visted(TreeNode subTree){
        subTree.isVisted=true;
        System.out.println("key:"+subTree.key+"--name:"+subTree.data);;
    }  

    /**
     * 二叉树的节点数据结构
     * @author WWX
     */
    private class  TreeNode{
        private int key = 0;
        private String data = null;
        private boolean isVisted = false;
        private TreeNode leftChild = null;
        private TreeNode rightChild = null;  

        public TreeNode(){}  

        /**
         * @param key  层序编码
         * @param data 数据域
         */
        public TreeNode(int key,String data){
            this.key = key;
            this.data = data;
            this.leftChild = null;
            this.rightChild = null;
        }
    }  

    //测试
    public static void main(String[] args) {
        BinaryTree bt = new BinaryTree();
        bt.createBinTree(bt.root);
        System.out.println("the size of the tree is " + bt.size());
        System.out.println("the height of the tree is " + bt.height());  

        System.out.println("***递归实现****(前序遍历)[ABDECF]遍历*****************");
        bt.preOrder(bt.root);  

        System.out.println("***递归实现****(中序遍历)[DBEACF]遍历*****************");
        bt.inOrder(bt.root);  

        System.out.println("***递归实现****(后序遍历)[DEBFCA]遍历*****************");
        bt.postOrder(bt.root);  

        System.out.println("***非递归实现****(前序遍历)[ABDECF]遍历*****************");
        bt.nonRecPreOrder(bt.root);  

        System.out.println("***非递归实现****(中序遍历)[DBEACF]遍历*****************");
        bt.nonRecInOrder(bt.root);  

        System.out.println("***非递归实现****(后序遍历)[DEBFCA]遍历*****************");
        bt.noRecPostOrder(bt.root);
    }
}

美文美图

 


剑指Offer——二叉树的更多相关文章

  1. 剑指offer 二叉树中和为某一个值的路径

    剑指offer 牛客网 二叉树中和为某一个值的路径 # -*- coding: utf-8 -*- """ Created on Tue Apr 9 15:53:58 2 ...

  2. 剑指offer 二叉树的层序遍历

    剑指offer 牛客网 二叉树的层序遍历 # -*- coding: utf-8 -*- """ Created on Tue Apr 9 09:33:16 2019 @ ...

  3. JS数据结构与算法 - 剑指offer二叉树算法题汇总

    ❗❗ 必看经验 在博主刷题期间,基本上是碰到一道二叉树就不会碰到一道就不会,有时候一个下午都在搞一道题,看别人解题思路就算能看懂,自己写就呵呵了.一气之下不刷了,改而先去把二叉树的基础算法给搞搞懂,然 ...

  4. 剑指offer——二叉树的镜像

    题目:操作给定的二叉树,将其变换为源二叉树的镜像. 思路:前序(根左右的顺序)遍历一棵树,在存储的时候将其左右树进行交换,最后按照处理后的树还原,即得到其镜像. /** public class Tr ...

  5. 剑指Offer 二叉树中和为某一值的路径(dfs)

    题目描述 输入一颗二叉树和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径.     思路: 递归,然后深搜,因为题目定义的, ...

  6. 剑指Offer 二叉树的镜像

    题目描述 操作给定的二叉树,将其变换为源二叉树的镜像. 输入描述: 二叉树的镜像定义:源二叉树 8 / \ 6 10 / \ / \ 5 7 9 11 镜像二叉树 8 / \ 10 6 / \ / \ ...

  7. 剑指Offer——二叉树的下一个结点

    题目描述: 给定一个二叉树和其中的一个结点,请找出中序遍历顺序的下一个结点并且返回.注意,树中的结点不仅包含左右子结点,同时包含指向父结点的指针. 分析: 如果该结点存在右子树,那么返回右子树的最左结 ...

  8. 剑指Offer——二叉树的深度

    题目描述: 输入一棵二叉树,求该树的深度.从根结点到叶结点依次经过的结点(含根.叶结点)形成树的一条路径,最长路径的长度为树的深度. 分析: 二叉树的深度等于其左子树的深度和右子树的深度两个中最大的深 ...

  9. 剑指Offer——二叉树中和为某一值的路径

    题目描述: 输入一颗二叉树和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径. 分析: 先序遍历二叉树,找到二叉树中结点值的和 ...

随机推荐

  1. WiFi认证中HTTPS重定向

    问题描述 在引入WiFiDog实现上网认证功能中,有2个绕不过的问题:https重定向和Select检测问题,前者非要求用户访问80端口,后者导致效率较低下.就用户体验来说,https无法主动重定向非 ...

  2. vue拦截器实现统一token,并兼容IE9验证

    项目中使用vue搭建前端页面,并通过axios请求后台api接口,完成数据交互.如果验证口令token写在在每次的接口中,也是个不小的体力活,而且也不灵活.这里分享使用vue自带拦截器,给每次请求的头 ...

  3. vue-router实现登录和跳转到指定页面,vue-router 传参

    定义路由的时候可以配置 meta 字段: const router = new VueRouter({ routes: [ { path: '/foo', component: Foo, childr ...

  4. SUSE11虚拟机安装与Oracle 11g安装

    SUSE11虚拟机安装与Oracle 11g安装 本文中所需所有参数均位于文末附录中 新建虚拟机,选择SUSE11 64位 启动虚拟机后,选择第二项安装 选择语言 跳过CD检查 选择全新安装 选择默认 ...

  5. python中删除某个元素的3种方法

    python中关于删除list中的某个元素,一般有三种方法:remove.pop.del 1.remove: 删除单个元素,删除首个符合条件的元素,按值删除 举例说明: >>> st ...

  6. jQuery 遍历 – 后代

    后代是子.孙.曾孙等等. 通过 jQuery,您能够向下遍历 DOM 树,以查找元素的后代. 向下遍历 DOM 树 下面是两个用于向下遍历 DOM 树的 jQuery 方法: children() f ...

  7. JavaScript 代码规范

    所有的 JavaScript 项目适用同一种规范. JavaScript 代码规范 代码规范通常包括以下几个方面: 变量和函数的命名规则 空格,缩进,注释的使用规则. 其他常用规范-- 规范的代码可以 ...

  8. Java第10次实验(数据库)

    参考资料 数据结构实验参考文件 MySql操作视频与数据库相关jar文件请参考QQ群文件. 第1次实验 1. MySQL数据库基本操作 完整演示一遍登录.打开数据库.建表.插入 常见错误:语句后未跟; ...

  9. DuKBitmapImages 图片压缩处理技术

    Android图片压缩上传系列 *压缩中的问题: --图片压缩上如果存在问题,势必造成消耗大量的流量,下载图片的速度慢等影响产品性能,那么如何解决?请看下面: 压缩图片一共多少张?一起压缩?分开压缩? ...

  10. Android Studio精彩案例(六)《使用一个Demo涵盖补间动画所有知识》

    转载本专栏文章,请注明出处,尊重原创 .文章博客地址:道龙的博客 元旦假期里,闲的无事,看到美团加载数据的动画,就突想写个Demo把动画知识集成一下.后来想了想,还是直接用一个Demo来把所有动画知识 ...