吐槽

额其实这个东西的话。。好像缠着机房里面的dalao们给我讲过好多遍了然后。。

拖到现在才搞懂也是服了qwq(可能有个猪脑子)

感觉就是主要几条式子然后疯狂换元换着换着就化简运算了?

草稿纸杀手qwq


莫比乌斯反演公式

$F(n)$和f(n)是定义在非负整数集合上面的两个函数,并且满足条件$F(n) = \sum\limits_{d\mid n}f(d)$,那么
$$
f(n) = \sum\limits_{d\mid n}\mu(d)F(\frac{n}{d})
$$
这条式子还有另一种描述

$F(n)$和f(n)$足条件F(n) = \sum\limits_{n\mid d}f(d)$,那么
$$
f(n)=\sum\limits_{n\mid d}\mu(\frac{d}{n})F(d)
$$

上面的公式有个$\mu$函数,定义如下:

1. 若 $d=1$,那么$\mu(d) =1$
2. 若$d=\prod\limits_{i=1}^{k}p_i$,且$p_i$均为互异素数,那么$\mu(d) =(-1)^k$
3. 其他情况($d$有平方因子)$\mu(d)=0$

$\mu$的常见性质

对于任意正整数$n$满足
$$
\sum\limits_{d\mid n}\mu(d) = [n=1]
$$

$$
\sum\limits_{d\mid n}\frac{\mu(d)}{d}=\frac{\phi(n)}{n}
$$

证明

啊。。是证明莫比乌斯反演公式啦。。不是上面两条qwq
$$
\sum\limits_{d\mid n}\mu(d)F(\frac{n}{d})=\sum\limits_{d\mid n}\mu(d)\sum\limits_{d'\mid \frac{n}{d}}f(d')=\sum\limits_{d'\mid n}f(d')\sum\limits_{d\mid \frac{n}{d'}}\mu(d)=f(n)
$$

应用

目前做到的几题都是。。各种换元然后优化式子?

总之大概就是上面四条式子(性质两条+反演两条)+各种玄学换来换去,最后好像。。目前做的几题都是化成了一个带有$g(T) = \sum\limits_{d\mid T}f(d)\mu(\frac{T}{d})$的式子,然后就想办法把$g(x)$筛出来

最后的求解基本上是要用到一个(类似)分块的方法用前缀和在根号的时间内把式子里面的其他一些奇奇怪怪的部分求出来

主要题做的也不多qwq大概就先这样吧qwq

(所以说过了这么久才更博肯定不是因为懒嗯)

【learning】莫比乌斯反演的更多相关文章

  1. 【Learning】 莫比乌斯反演

    莫比乌斯反演 ​ 对于两个定义域为非负整数的函数\(F(n)\)和\(f(n)\) ​ 若满足:\(F(n)=\sum\limits_{d|n}f(d)\),则反演得到\(f(n)=\sum\limi ...

  2. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  3. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  4. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  5. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  6. 莫比乌斯函数筛法 & 莫比乌斯反演

    模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...

  7. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

  8. POI2007_zap 莫比乌斯反演

    题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...

  9. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  10. CSU 1325 莫比乌斯反演

    题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...

随机推荐

  1. linux 添加静态路由

    Linux下静态路由修改命令方法一:添加路由route add -net 192.168.0.0/24 gw 192.168.0.1route add -host 192.168.1.1 dev 19 ...

  2. 归并排序Merge Sort

    //C语言实现 void mergeSort(int array[],int first, int last) { if (first < last)//拆分数列中元素只剩下两个的时候,不再拆分 ...

  3. Kubernetes 概念整理

    注:以下大部分内容来自网上摘录,以便后期查阅. Kubernetes (通常称为 K8s) 是用于自动部署.扩展和管理容器化(containerized)应用程序的开源系统,是 Google 内部工具 ...

  4. return的新思考

    <!DOCTYPE html><html lang="en"> <head> <meta charset="UTF-8" ...

  5. 五子棋的斜对角方向上的规则 -- java编程(简单粗暴版)

    五子棋判断输赢规则 --- 斜对角线方向上 一.左上右下方向上 1.分析图 2.代码 /**判断左上右下方向上是否有连续五颗相同颜色的棋子 * 全部遍历法 */ int loop = 0; boole ...

  6. 支持ipV6和ipV4的客户端编程

    ipv4和ipv6在socket初始化的时候是不一样的. ipv4 socket初始化: int CClient::InitSocket(CString strIP, short portNum) { ...

  7. UVALive - 3027 Corporative Network (并查集)

    这题比较简单,注意路径压缩即可. AC代码 //#define LOCAL #include <stdio.h> #include <algorithm> using name ...

  8. Service IP 原理 - 每天5分钟玩转 Docker 容器技术(137)

    Service Cluster IP 是一个虚拟 IP,是由 Kubernetes 节点上的 iptables 规则管理的. 可以通过 iptables-save 命令打印出当前节点的 iptable ...

  9. 从零开始学习前端JAVASCRIPT — 14、闭包与继承

    一.闭包 1 . 概念:闭包就是能够读取其他函数内部变量的函数.在JS中,只有函数内部的子函数才能读取局部变量,因此可以把闭包简单理解为”定义在一个函数内部的函数”. 2 . 闭包的特点 1)可以读取 ...

  10. Trump就职演说

    美东时间1月20日,特朗普在美国国会大厦宣誓就职,正式成为第45任美国总统.特朗普在就职演说中说,"我们曾经致力于保卫其他国家的领地,却忽略了我们自己的领土.我们曾经将成千上万亿美元转移到海 ...