吐槽

额其实这个东西的话。。好像缠着机房里面的dalao们给我讲过好多遍了然后。。

拖到现在才搞懂也是服了qwq(可能有个猪脑子)

感觉就是主要几条式子然后疯狂换元换着换着就化简运算了?

草稿纸杀手qwq


莫比乌斯反演公式

$F(n)$和f(n)是定义在非负整数集合上面的两个函数,并且满足条件$F(n) = \sum\limits_{d\mid n}f(d)$,那么
$$
f(n) = \sum\limits_{d\mid n}\mu(d)F(\frac{n}{d})
$$
这条式子还有另一种描述

$F(n)$和f(n)$足条件F(n) = \sum\limits_{n\mid d}f(d)$,那么
$$
f(n)=\sum\limits_{n\mid d}\mu(\frac{d}{n})F(d)
$$

上面的公式有个$\mu$函数,定义如下:

1. 若 $d=1$,那么$\mu(d) =1$
2. 若$d=\prod\limits_{i=1}^{k}p_i$,且$p_i$均为互异素数,那么$\mu(d) =(-1)^k$
3. 其他情况($d$有平方因子)$\mu(d)=0$

$\mu$的常见性质

对于任意正整数$n$满足
$$
\sum\limits_{d\mid n}\mu(d) = [n=1]
$$

$$
\sum\limits_{d\mid n}\frac{\mu(d)}{d}=\frac{\phi(n)}{n}
$$

证明

啊。。是证明莫比乌斯反演公式啦。。不是上面两条qwq
$$
\sum\limits_{d\mid n}\mu(d)F(\frac{n}{d})=\sum\limits_{d\mid n}\mu(d)\sum\limits_{d'\mid \frac{n}{d}}f(d')=\sum\limits_{d'\mid n}f(d')\sum\limits_{d\mid \frac{n}{d'}}\mu(d)=f(n)
$$

应用

目前做到的几题都是。。各种换元然后优化式子?

总之大概就是上面四条式子(性质两条+反演两条)+各种玄学换来换去,最后好像。。目前做的几题都是化成了一个带有$g(T) = \sum\limits_{d\mid T}f(d)\mu(\frac{T}{d})$的式子,然后就想办法把$g(x)$筛出来

最后的求解基本上是要用到一个(类似)分块的方法用前缀和在根号的时间内把式子里面的其他一些奇奇怪怪的部分求出来

主要题做的也不多qwq大概就先这样吧qwq

(所以说过了这么久才更博肯定不是因为懒嗯)

【learning】莫比乌斯反演的更多相关文章

  1. 【Learning】 莫比乌斯反演

    莫比乌斯反演 ​ 对于两个定义域为非负整数的函数\(F(n)\)和\(f(n)\) ​ 若满足:\(F(n)=\sum\limits_{d|n}f(d)\),则反演得到\(f(n)=\sum\limi ...

  2. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  3. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  4. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  5. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  6. 莫比乌斯函数筛法 & 莫比乌斯反演

    模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...

  7. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

  8. POI2007_zap 莫比乌斯反演

    题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...

  9. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  10. CSU 1325 莫比乌斯反演

    题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...

随机推荐

  1. angular2-qrcode (转)

    插件选择 angular2-qrcode npm install angular2-qrcode --savecnpm install angular2-qrcode --save 参考github ...

  2. 【考试】java基础知识测试,看你能得多少分?

    1 前言 共有5道java基础知识的单项选择题,每道20分,共计100分.解析和答案在最后. 2 试题 2.1 如下程序运行结果是什么? class Parent { public Parent(St ...

  3. Android Camera 摄像 demo

          google 在Android 5.0推出 Camera2 这个类,用于替换 Camera,但是Camera2要求android sdk 最低版本为 minSdkVersion = 21 ...

  4. 由select引发的思考

    一.前言 网络编程里一个经典的问题,selec,poll和epoll的区别?这个问题刚学习编程时就接触了,当时看了材料很不明白,许多概念和思想没有体会,现在在这个阶段,再重新回头看这个问题,有一种豁然 ...

  5. Storm业务功能

    监控平台当前使用storm对日志进行流式分析计算,用于支撑监控数据清洗,后来逐渐在storm上搭建起数据在线关联,数据离线关联,明细数据清洗,日志搜索等功能,本章节对各功能进行简要概述. 对storm ...

  6. 深刻理解iosBlock

    深刻理解iosBlock ///一个控制器里的方法 - (void)setRefreshHeader { ACWeakSelf(self); self.tableView.mj_header = [M ...

  7. python函数式编程之迭代器

    什么是迭代器 顾名思义,就是更新换代的意思 python中的迭代器就是根据上一个结果生成下一个结果,一直循环往复不断重复的过程 迭代器有两个特点: 1.不断重复同一个过程 2.根据上一个结果生成下一个 ...

  8. 二、Mysql(二)

    原文参考:http://www.cnblogs.com/wupeiqi/articles/5713323.html 还有一个是课件,看着也像博客,但不知道是谁的 内置函数 触发器 存储过程 索引 与p ...

  9. AutoAudit研究学习

    AutoAudit介绍   AutoAudit这个是Paul Nielsen写的一个开源的审计跟踪的脚本项目,项目位于https://autoaudit.codeplex.com/上,Paul Nie ...

  10. SQL中partition关键字的使用

    最近在写后台语句时候,运用到了partition这样一个关键字. 先大致说一下背景,有一种数据表,如下 现在需要取出,每一个人最近的一次打卡时间. 思路是,先把数据按照人名分组,然后在每个组里面按照时 ...