hdu 5607 BestCoder Round #68 (矩阵快速幂)
graph
Submissions: 61
在一个NN个点(标号11~nn),MM条边的有向图上,一开始我在点uu,每一步我会在当前点的出边中等概率的选一条走过去,求走了恰好KK步后走到每个点的概率.
第一行两个正整数N,MN,M,表示点数和边数.
接下来MM行,每行两个正整数X,YX,Y.表示一条XX向YY的一条有向边(保证没有重边和自环).
接下来一个正整数QQ,表示询问个数.
接下来QQ行,每行两个正整数u,Ku,K,表示开始的点和步数.
N \leq 50, M \leq 1000, Q \leq 20, u \leq n, K \leq 10^{9}N≤50,M≤1000,Q≤20,u≤n,K≤109.
每个点保证至少有一个出边.
QQ行,每行NN个数字,用空格隔开,第ii个数字表示从uu开始走KK步到ii的概率.
考虑到输出的答案可能会有精度问题,经过一定的分析后可以发现答案一定可以被表示成\frac{X}{Y}YX的形式,你只需输出X \times Y^{10^9+5} \ mod \ (10^9+7)X×Y109+5 mod (109+7)的值即可. 在每行后面多输出一个空格,否则可能会使你PE.
3 2
1 2
1 3
1
1 1
0 500000004 500000004
这是一个三个点,两条边的有向图,它们分别是(1->2,1->3)(1−>2,1−>3).现在在1号点,走了一步后,有1/2的概率走到了2,有1/2的概率走到了3,本来应该输出 0 0.5 0.5
而根据上面所说的,应输出1*2^{10^9+5} \ mod \ (10^9+7)=5000000041∗2109+5 mod (109+7)=500000004.
思路:
矩阵经典问题:求从i点走k步后到达j点的方案数(mod p)。
本题输出X/Y,可以看成X是u走k步到j的方案数,Y是从u走k步的所有方案数
于是对矩阵先进行处理,即给m[i][j]乘上节点i的出度的1e9+5次方。
(ma.m[i][j]*(ll)pow_mod(g[i],1e9+5,MOD))%MOD;
再用矩阵快速幂即可
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double ld;
const ld eps=1e-10;
const int inf = 0x3f3f3f;
const int maxn = 55;
const int MOD = 1e9+7;
ll n;
int g[55];
struct Matrix
{
ll m[maxn][maxn];
Matrix()
{
memset(m,0,sizeof(m));
}
}; Matrix multi(Matrix a,Matrix b,ll mod)
{
Matrix tmp;
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
for(int k = 1; k <= n; k++)
{
tmp.m[i][j] = (tmp.m[i][j]+(a.m[i][k] * b.m[k][j])%mod)%mod;
}
}
}
return tmp;
} Matrix Pow(Matrix a,int m,int p)
{
Matrix t;
for(int i = 1; i <= n; i++)
t.m[i][i] = 1;
while(m)
{
if(m & 1)
{
t = multi(t,a,p);
m-=1;
}
a = multi(a,a,p);
m >>= 1;
}
return t;
} ll pow_mod(ll a,ll m,ll p)
{
a %= p;
ll t = 1;
while(m)
{
if(m & 1)
{
t = t * a%p;
m-=1;
}
a = a*a%p;
m >>= 1;
}
return t%p;
} int main()
{
ll m;
int a,b;
int q,k,u;
while(scanf("%I64d%I64d",&n,&m) != EOF)
{
Matrix ma;
memset(g,0,sizeof(g));
for(int i = 0; i < m; i++)
{
scanf("%d%d",&a,&b);
ma.m[a][b] ++;
g[a] ++;
}
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
ma.m[i][j] = (ma.m[i][j]*(ll)pow_mod(g[i],1e9+5,MOD))%MOD;
}
}
scanf("%d",&q); while(q--)
{
scanf("%d%d",&u,&k);
Matrix tans =Pow(ma,k,MOD);
for(int j = 1; j <= n; j++)
{
printf("%I64d ",tans.m[u][j]%MOD);
}
printf("\n");
}
}
return 0;
}
hdu 5607 BestCoder Round #68 (矩阵快速幂)的更多相关文章
- hdu 5667 BestCoder Round #80 矩阵快速幂
Sequence Accepts: 59 Submissions: 650 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536 ...
- hdu 4686 Arc of Dream(矩阵快速幂)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...
- HDU 4686 Arc of Dream 矩阵快速幂,线性同余 难度:1
http://acm.hdu.edu.cn/showproblem.php?pid=4686 当看到n为小于64位整数的数字时,就应该有个感觉,acm范畴内这应该是道矩阵快速幂 Ai,Bi的递推式题目 ...
- HDU - 4990 Reading comprehension 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4990 题意 初始的ans = 0 给出 n, m for i in 1 -> n 如果 i 为奇 ...
- HDU 1005 Number Sequence:矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 题意: 数列{f(n)}: f(1) = 1, f(2) = 1, f(n) = ( A*f(n ...
- HDU 2604 Queuing( 递推关系 + 矩阵快速幂 )
链接:传送门 题意:一个队列是由字母 f 和 m 组成的,队列长度为 L,那么这个队列的排列数为 2^L 现在定义一个E-queue,即队列排列中是不含有 fmf or fff ,然后问长度为L的E- ...
- HDU 6470:Count(矩阵快速幂)
Count Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- hdu 1575 Tr A(矩阵快速幂)
今天做的第二道矩阵快速幂题,因为是初次接触,各种奇葩错误整整调试了一下午.废话不说,入正题.该题应该属于矩阵快速幂的裸题了吧,知道快速幂原理(二进制迭代法,非递归版)后,剩下的只是处理矩阵乘法的功夫了 ...
- hdu 4565 So Easy!(矩阵+快速幂)
题目大意:就是给出a,b,n,m:让你求s(n); 解题思路:因为n很可能很大,所以一步一步的乘肯定会超时,我建议看代码之前,先看一下快速幂和矩阵快速幂,这样看起来就比较容易,这里我直接贴别人的推导, ...
随机推荐
- java的socket通信
本文讲解如何用java实现网络通信,是一个非常简单的例子,我比较喜欢能够立马看到结果,所以先上代码再讲解具体细节. 服务端: import java.io.BufferedReader; import ...
- nyoj 寻找最大数(二)
寻找最大数(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 给你一个数字n(可能有前缀0). 要求从高位到低位,进行 进栈出栈 操作,是最后输出的结果最大. ...
- css3动画 一行字鼠标触发 hover 从左到右颜色渐变
偶然的机会发现的这个东东 这几天做公司的官网 老板突然说出了一个外国网站 我就顺手搜了 并没有发现他说的高科技 但是一个东西深深地吸引了我 就是我下面要说的动画 这个好像不能放视频 我就简单的描述一 ...
- css中的em 简单教程 -- 转
先附上原作的地址: https://www.w3cplus.com/css/px-to-em 习惯性的复制一遍~~~~ -------------------------------我是分界线---- ...
- 17-TypeScript代理模式
在有些情况下,我们需要把客户端真正调用的类和方法隐藏起来,而通过暴露代理类给客户端.客户端调用代理类的方式就可以访问到真实类提供的功能. abstract class Called{ protecte ...
- AngularJS1.X学习笔记13-动画和触摸
本文主要涉及了ngAnimation和ngTouch模块,自由男人讲的比较少,估计要用的时候还要更加系统的学习一下. 一.安装 没错,就是酱紫. 二.玩玩动画 <!DOCTYPE html> ...
- jQuery serialize()方法获取不到数据,alert结果为空
网上查找,问题可能是 id有重复 经排查,没有发现重复id 解决方案 form表单中每个input框都没有name属性,添加name属性即可 若name属性与jQuery的关键字有冲突,也可导致该问题 ...
- logback打印日志时添加上下文
尝试上述特性, 配置如下: 效果:
- 理解JavaScript中函数方法
1.函数声明和函数表达式 通过字面量创建函数的方式有两种函数声明和函数表达式: 函数声明: function sum(x, y) { var result = x + y; return result ...
- 深度理解DOM拷贝clone()
克隆节点是DOM的常见操作,jQuery提供一个clone方法,专门用于处理dom的克隆: .clone()方法深度 复制所有匹配的元素集合,包括所有匹配元素.匹配元素的下级元素.文字节点. clon ...