bzoj 3594: [Scoi2014]方伯伯的玉米田
3594: [Scoi2014]方伯伯的玉米田
Time Limit: 60 Sec Memory Limit: 128 MB
Submit: 1399 Solved: 627
[Submit][Status][Discuss]
Description
方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美。
这排玉米一共有N株,它们的高度参差不齐。
方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列。
方伯伯可以选择一个区间,把这个区间的玉米全部拔高1单位高度,他可以进行最多K次这样的操作。拔玉米则可以随意选择一个集合的玉米拔掉。
问能最多剩多少株玉米,来构成一排美丽的玉米。
Input
第1行包含2个整数n,K,分别表示这排玉米的数目以及最多可进行多少次操作。
第2行包含n个整数,第i个数表示这排玉米,从左到右第i株玉米的高度ai。
Output
输出1个整数,最多剩下的玉米数。
Sample
Input
3 1
2 1 3
Sample
Output
3
HINT
1 < N < 10000,1 < K ≤ 500,1 ≤ ai ≤5000
从贪心的角度,显然有从i到n整体提高要比i到某个r提高优。因为当提高范围为r(r!=n)时,无非两种情况一种是在[r+1,n]存在一个庄稼原来比(I,r]中的某一个使得在r以前长度最大值的点大于或等于,另一种是没有更大的。那么对于第二种对于答案没有贡献,我们从i到n拔高也就没影响,而当出现第一种时,可能由于多次拔高使得原本可以在[r+1,n]之间可以有贡献的点失败了,那么显然没有从i到n拔高更优。
不优化的姿势呢显然。
F[i][j]表示第i个位置时(必须使用第i个位置)使用了j次技能的最大长度。所以F[i][j]=max(F[x][y])(x<i,y<j,a[x]<=a[i]+y-j)
===>(x<i,y<j,a[x]+y<=a[i]+j)。显然对于每次添加,都是现在已有状态都是满足x<i。现在我们可以将y与a[x]+y搞成树状数组,每次添加都是在左下角矩形中选一个最大值。然后这两维就可以优化为log2(n)*log2(m+max(a[i]));
总时间复杂度就是O(n*k* log2(n)*log2(m+max(a[i])))。恩,反正过了=-=。
#include<cstdio>
#include<iostream>
#define lowbit(x) (x&(-x))
using namespace std;
const int N=;
int n,m,mx;
int a[N];
int c[N][];
void add(int x,int y,int w){
for(int i=x;i<=mx;i+=lowbit(i))
for(int j=y;j<=m+;j+=lowbit(j))
c[i][j]=max(w,c[i][j]);
}
inline int sum(int x,int y){
int ans=;
for(int i=x;i;i-=lowbit(i))
for(int j=y;j;j-=lowbit(j))
ans=max(ans,c[i][j]);
return ans;
}
int f[N][];
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){scanf("%d",a+i);mx=a[i]>mx?a[i]:mx;}
mx+=m;
int ans=;
for(int i=;i<=n;i++){
for(int j=m;j>=;j--){
f[i][j]=sum(a[i]+j,j+)+;
// printf("f[%d][%d]=%d\n",i,j,f[i][j]);
add(a[i]+j,j+,f[i][j]);
ans=max(ans,f[i][j]);
}
}
printf("%d",ans);
}
/*
3 1
2 1 3
*/
bzoj 3594: [Scoi2014]方伯伯的玉米田的更多相关文章
- bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 314 Solved: 132[Submit][Sta ...
- bzoj 3594 [Scoi2014]方伯伯的玉米田(DP+二维BIT)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3594 [题意] 给定一个n个数的序列,有K次将一个区间内的数加1的机会,问最长不下降子 ...
- BZOJ 3594 [Scoi2014]方伯伯的玉米田(二维树状数组)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3594 [题目大意] 给出一个数列,选出k个区间使得区间内数全部加1, 求k次操作之后最 ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田【二维树状数组+dp】
设f[i][j]为前i棵玉米被拔高了j(因为是单调不降所以前面越高越好,所以每次拔一个前缀),转移是f[i][j]=f[k][l]+1,l<=j,a[k]+l<=a[i]+j,然后用二维树 ...
- BZOJ 3594: [Scoi2014]方伯伯的玉米田 (二维树状数组优化DP)
分析 首先每次增加的区间一定是[i,n][i,n][i,n]的形式.因为如果选择[i,j](j<n)[i,j](j<n)[i,j](j<n)肯定不如把后面的全部一起加111更优. 那 ...
- [SCOI2014]方伯伯的玉米田
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- [SCOI2014]方伯伯的玉米田 题解(树状数组优化dp)
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- bzoj3594: [Scoi2014]方伯伯的玉米田--树状数组优化DP
题目大意:对于一个序列,可以k次选任意一个区间权值+1,求最长不下降子序列最长能为多少 其实我根本没想到可以用DP做 f[i][j]表示前i棵,操作j次,最长子序列长度 p[x][y]表示操作x次后, ...
随机推荐
- [转] .NET领域驱动设计—实践(穿过迷雾走向光明)
阅读目录 开篇介绍 1.1示例介绍 (OnlineExamination在线考试系统介绍) 1.2分析.建模 (对真实业务进行分析.模型化) 1.2.1 用例分析 (提取系统的所有功能需求) 1.3系 ...
- 用queue函数写广搜
以走迷宫需要的最少步数的代码为例 #include<stdio.h>#include<string.h>#include<queue> using namespac ...
- sodu 命令场景分析
摘自:http://www.cnblogs.com/hazir/p/sudo_command.html sudo 命令情景分析 Linux 下使用 sudo 命令,可以让普通用户也能执行一些或者全 ...
- MFC简单绘制安卓机器人
原始日期:2014-03-29 20:35 众所周知,google的安卓机器人形象十分经典,包括眼睛的位置,胳膊以及天线的位置都是有固定位置和比例的,而且是最恰当的,看起来最美.而微软基础类库MFC绘 ...
- 如何在前端模版引擎开发中避免使用eval函数
前段时间,想着自己写一个简单的模版引擎,便于自己平时开发demo时使用.于是根据自己对模版引擎的理解,定义自己的模版格式,然后,根据自己定义的格式,编写处理函数,将模版标签中的字符串,解析成可执行的字 ...
- C#实现手机发送验证码
之前不怎么了解这个,一直以为做起来很复杂. 直到前两天公司要求要做这个功能. 做了之后才发现 这不过就是一个POST请求就能实现的东西.现在给大家分享一下,有不足之处还请多多指教. 废话不多说 直接上 ...
- Spring Boot 构建 WAR和JAR 文件
原文:https://github.com/x113773/testall/issues/3 ## JAR文件方式一:1. 修改[pom.xml](https://github.com/x113773 ...
- c++有关构造函数和析构函数中调用虚函数问题
今天看了一道迅雷的笔试题目,然后引起一段思考,题目如下: 下列关于虚函数的说法正确的是()A.在构造函数中调用类自己的虚函数,虚函数的动态绑定机制还会生效.B.在析构函数中调用类自己的虚函数,虚函数的 ...
- java equals和==区别及string类的说明
一.equals和==的区别 1.1.equals之string字符串的比较 1.1.1.源码如下图 if (this == anObject) { return true; ...
- ReadTeacherObj
package JBJADV003;import java.io.*;public class ReadTeacherObj { /** * @param args */ public static ...