题意:链接

方法:SPFA+DP

解析:挺好的题目。因为数据范围较小所以用这样的方式能够搞,只是也是挺不好想的。

我们定义cost(i,j)表示从第i天走到第j天运用同一种方式的最小花费,然后因为数据比較小,我们定义f[i]表示前i天的最小花费。

接下来我们就能够写出来转移方程了

f[i]=minf[i],f[j]+K+cost(j+1,i)

j比i小。

然后就能够水过了!

顺带提一下,在计算cost(j+1,i)时,要考虑每一个限制区段的预处理,也就是哪些点在这些天中均可走。

代码

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 110
#define M 10100
#define INF 0x3f3f3f3f
using namespace std;
int n,m,K,e,d,cnt;
int v[N],can[N],f[N];
struct node
{
int to;
int next;
int val;
}edge[M];
int head[N],dis[N];
struct limit
{
int p,a,b;
}l[M];
//f[i]=max(c(1,i),f[j]+k+c(j+1,i));
void init()
{
memset(head,-1,sizeof(head));
cnt=1;
}
void edgeadd(int from,int to,int val)
{
edge[cnt].to=to;
edge[cnt].val=val;
edge[cnt].next=head[from];
head[from]=cnt++;
}
int cost(int le,int ri)
{
memset(can,0,sizeof(can));
for(int i=1;i<=d;i++)
{
if(max(le,l[i].a)<=min(ri,l[i].b))can[l[i].p]=1;
}
memset(dis,0x3f,sizeof(dis));
memset(v,0,sizeof(v));
queue<int>q;
q.push(1);
v[1]=1;
dis[1]=0;
while(!q.empty())
{
int u=q.front();
q.pop();
v[u]=0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int to=edge[i].to;
if(can[to])continue;
if(dis[u]+edge[i].val<dis[to])
{
dis[to]=dis[u]+edge[i].val;
if(!v[to])
{
q.push(to);
v[to]=1;
}
}
}
}
if(dis[m]==INF)return INF;
return dis[m]*(ri-le+1);
}
int main()
{
init();
scanf("%d%d%d%d",&n,&m,&K,&e);
for(int i=1;i<=e;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
edgeadd(x,y,z);
edgeadd(y,x,z);
}
scanf("%d",&d);
for(int i=1;i<=d;i++)scanf("%d%d%d",&l[i].p,&l[i].a,&l[i].b);
for(int i=1;i<=n;i++)
{
f[i]=cost(1,i);
for(int j=1;j<i;j++)
{
f[i]=min(f[i],f[j]+K+cost(j+1,i));
}
}
printf("%d\n",f[n]);
}

BZOJ 1003 [ZJOI2006]物流运输trans SPFA+DP的更多相关文章

  1. 【BZOJ1003】1003: [ZJOI2006]物流运输trans SPFA+DP

    Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...

  2. BZOJ 1003: [ZJOI2006]物流运输(spfa+dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1003 题意: 思路: 首先用spfa计算一下任意两天之内的最短路,dis[a][b]表示的就是在第a ...

  3. BZOJ 1003 [ZJOI2006]物流运输trans ★(Dijkstra + DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1003 思路 先Dijkstra暴力求出i..j天内不变换路线的最少花费,然后dp[i] = ...

  4. bzoj 1003: [ZJOI2006]物流运输【spfa+dp】

    预处理出ans[i][j]为i到j时间的最短路,设f[i]为到i时间的最小代价,转移显然就是 f[i]=min(f[j-1]+ans[j][i]*(i-j+1)+k); #include<ios ...

  5. BZOJ 1003: [ZJOI2006]物流运输trans(最短路+dp)

    1A,爽! cost[i][j]表示从第i天到第j天不改路线所需的最小花费,这个可以用最短路预处理出.然后dp(i)=cost[j][i]+dp(j-1)+c. c为该路线的花费. --------- ...

  6. BZOJ 1003 [ZJOI2006]物流运输trans

    1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4242  Solved: 1765[Submit] ...

  7. BZOJ 1003: [ZJOI2006]物流运输trans DP+最短路

    Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...

  8. BZOJ 1003 ZJOI2006 物流运输trans 动态规划+SPFA

    标题效果:给定一个无向图.输送n日,有一天的某一时刻不能去,更换行考虑k,求总成本 一阶cost[i][j]用于第一i为了天j天正在同一航线的最低消费 这种利用SPFA处理 然后就是移动的法规问题 订 ...

  9. BZOJ-1003 物流运输trans SPFA+DP

    傻逼错误耗我1h,没给全范围坑我1A.... 1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec Memory Limit: 162 MB Submit: 529 ...

随机推荐

  1. js关闭子页面刷新父页面

    一.打开方式为window.open window.opener.location.reload(); 二.打开方式为window.showModalDialog 首先在打开时的时候要设置window ...

  2. JSP技术介绍

    1. 技术介绍 JSP即Java Server Page,中文全称是Java服务器语言.它是由Sun Microsystems公司倡导.许多公司参与建立的一种动态网页技术标准,它在动态网页的建设中有强 ...

  3. [转发]读取txt防止读到乱码--自动根据文件编码进行读取

    以下是摘抄 /// <summary> /// 获取文件的编码格式 /// </summary> public class EncodingType { /// <sum ...

  4. The Lisp Curse /Lisp魔咒

    The Lisp Curse /Lisp魔咒 http://winestockwebdesign.com/Essays/Lisp_Curse.html 英文出处 http://www.soimort. ...

  5. Node做中转服务器,转发接口

    查询各种资料,和整理网上一哥们不完整的接口.做成,可以使用的转发服务! 由于项目在做前后端分离,牵扯跨域和夸协议问题,临时抱佛脚,选择用nodejs做中转,我想应该好多人都用它.但是做普通的表单转发没 ...

  6. C#PreviewKeyDown 与KeyDown 区别

    PreviewKeyDown:在焦点位于此控件上的情况下,当有按键动作时发生(在 KeyDown 事件之前发生). 小注: 某些按键,比如 Tab.Return.Esc 和箭头键,通常会被某些控件忽略 ...

  7. C语言控制流语句

    title: 2017-10-18控制流 tags: binsearch else-if, shellsort, insertsort grammar_cjkRuby: true --- 前段时间忙着 ...

  8. python进阶------进程线程(三)

    python中的进程 1.multiprocessing模块 由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进 ...

  9. Python的egg包

    1.背景 查看flower的源码,首先看到flower的主程序如下: #!/usr/local/sinasrv2/bin/python2.7 # EASY-INSTALL-ENTRY-SCRIPT: ...

  10. RabbitMQ之Helloworld

    RabbitMQ介绍 RabbitMQ是一个消息代理.它的核心原理非常简单:接收和发送消息. 专有名词 生产(Producing)意思就是发送.发送消息的程序就是一个生产者(producer).我们一 ...