Ranking Relevance是搜索排序算法的各个影响因子中相当重要的一个部分。对于Ranking Relevance的计算,过去的技术往往分为两个大的方向:Click BehaviorText Match

1. Click Behavior类的feature

主要是利用用户的点击行为来计算query-doc relevance,直观上,点击越多的query-doc pair,relevance也越高,当然Click Behavior类的feature还包括:是否是首次点击,是否是最后一次点击,是否是唯一点击,等等。

但是Click Behavior类的feature的缺点也显而易见:

1)Sparsity。只有“有过点击”的query-doc pair,我们才可以计算它们的relevance,而对那些历史上根本没有过点击的query-doc pair,往往束手无策。

2)Noisy。另外一个更常见的问题是,对于长尾的query-doc pair,展现数和点击数过少,所以得到的query-doc的展现CTR等数据噪音较大,虽然也可以通过贝叶斯平滑的方式来缓解(详见博客:http://www.cnblogs.com/bentuwuying/p/6389222.html,和http://www.cnblogs.com/bentuwuying/p/6498370.html)。

总结来看,Click Behavior类的feature,对于Top的query-doc pair(即展现次数&点击次数较多)比较可靠,对于长尾的,甚至是没出现过的query-doc pair,则不太可靠。

2. Text Match类的feature

包括Term Match(term级别的匹配),和Topic Match(语义级别的匹配)。Text Match并不受到query-doc的展现次数和点击次数的多少的影响,即当query和doc确定后,这类feature的值就确定了(当然前提是采用相同的模型计算的),并不会随着时间的推移而改变,是一种静态的relevance关系。

2-1. Term Match

包括:直接根据query和doc的term进行各种匹配,各种计算得到,比如,词频(term frequency),TF-IDF,布尔模型,空间向量模型(将query和doc各自分词后的term组成一个共享的词典vector,然后各自表示成相同维度的vector,计算相似度),BM25,query与doc各个field的term级别重叠比例(重叠term个数占query term个数的比例,重叠term个数占doc各个field的term个数的比例,query-doc的N-gram重叠比例,query能覆盖doc的N-gram prefix的比例,query-doc是否perfect match)等。

Term Match的缺点在于:

1) 无法解决近义词的问题,由于是term级别的匹配,那么近义词虽然表达的意思近似,但是却无法匹配,或者说在向量空间上距离很远,即无法表达近义词。

2)query和doc上的term的语法表达的区别,例如query中的“how much”与doc中的“price”,意思虽然近似,但是存在语法语义上的区别。

2-2. Topic Match

包括:一般是将query和doc都映射到一个隐含层空间向量上(隐语义空间),然后基于这个隐含层空间上的vector计算相似度,一般可以用pLSA,或者LDA等NLP模型来处理)

Topic Match的缺点在于,解释性较差,不同于Term Match中我们把query和doc切分到term级别,解释性较强,而在Topic Match中,映射到隐语义空间上时,vector每个维度表达的意思并不知道,不利于验证和debug。

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 }
span.s1 { font: 12.0px "Helvetica Neue" }

Ranking Relevance小结的更多相关文章

  1. Ranking relevance in yahoo search (2016)论文阅读

    文章链接 https://www.kdd.org/kdd2016/papers/files/adf0361-yinA.pdf abstract 点击特征在长尾query上的稀疏性问题 基础相关性三大技 ...

  2. 【阅读笔记】Ranking Relevance in Yahoo Search (四 / 完结篇)—— recency-sensitive ranking

    7. RECENCY-SENSITIVE RANKING 作用: 为recency-sensitive的query提高排序质量: 对于这类query,用户不仅要相关的还需要最新的信息: 方法:rece ...

  3. 【阅读笔记】Ranking Relevance in Yahoo Search (一)—— introduction & background

    ABSTRACT: 此文在相关性方面介绍三项关键技术:ranking functions, semantic matching features, query rewriting: 此文内容基于拥有百 ...

  4. 【阅读笔记】Ranking Relevance in Yahoo Search (三)—— query rewriting

    5. QUERY REWRITING 作用: query rewriting is the task of altering a given query so that it will get bet ...

  5. 【阅读笔记】Ranking Relevance in Yahoo Search (二)—— maching learned ranking

    3. MACHINE LEARNED RANKING 1) 完全使用不好的数据去训练模型不可行,因为负面结果不可能覆盖到所有方面: 2) 搜索可以看做是个二分问题,在此实验中,我们使用gradient ...

  6. Facebook Architecture

    Facebook Architecture Quora article a relatively old presentation on facebook architecture another I ...

  7. 使用点击二分图计算query-document的相关性

    之前的博客中已经介绍了Ranking Relevance的一些基本情况(Click Behavior,和Text Match):http://www.cnblogs.com/bentuwuying/p ...

  8. 使用点击二分图传导计算query-document的相关性

    之前的博客中已经介绍了Ranking Relevance的一些基本情况(Click Behavior,和Text Match):http://www.cnblogs.com/bentuwuying/p ...

  9. KDD2016,Accepted Papers

    RESEARCH TRACK PAPERS - ORAL Title & Authors NetCycle: Collective Evolution Inference in Heterog ...

随机推荐

  1. iOS热更新技术被苹果官方警告?涉及到RN、Weex、JSPatch!!!

    今天一早,不少iOS开发群都炸窝了,原因是部分iOS开发者收到了苹果的警告邮件: 有开发者质疑可能是项目中使用了JSPatch.weex以及ReactNative等热更新技术.对于修复bug提交审核的 ...

  2. .NET的SqlHelper应用代码

    首先需要引用命名空间 ,同时也需要右击'引用' --> '添加引用' --> '程序集' --> '框架' --> 'System.Configuration',SqlHelp ...

  3. js小动画算法

    function step(A,B,rate,callback){ A = A + (B - A) / (rate || 2); if(Math.abs(A-B) < 1){ callback( ...

  4. Adapter基本用法

    使用流程 graph LR A(新建适配器) -->B(绑定数据源) B-->C(设置适配器) 1. ArrayAdapter new ArrayAdapter<?>(cont ...

  5. Implement Stack using Queues leetcode

    Implement the following operations of a stack using queues. push(x) -- Push element x onto stack. po ...

  6. click和onclick本质的区别

    原生javascript的click在w3c里边的阐述是DOM button对象,也是html DOM click() 方法,可模拟在按钮上的一次鼠标单击. button 对象代表 HTML 文档中的 ...

  7. C++基础——C面向过程与C++面向对象编程01_圆面积求解

    #include "iostream";//包含C++的头文件using namespace std;//使用命名空间std标准的命名空间(在这个命名空间中定义了很多标准定义)vo ...

  8. echarts柱图自定义为硬币堆叠的形式

    看这标题,可能会有一些人不太明白,那么直接上图,就是柱图展示形式如下图(兼容IE8) 要想实现这样展示效果.我们想用echarts直接实现不行的,即使是纹理填充也不可行的,但是我们可以借助echart ...

  9. 000 Python之禅

    The Zen of Python, by Tim Peters Beautiful is better than ugly.Explicit is better than implicit.Simp ...

  10. Eclipse中的快捷键快速生成常用代码(例如无参、带参构造,set、get方法),以及Java中重要的内存分析(栈、堆、方法区、常量池)

    (一)Eclipse中的快捷键:  ctrl+shift+f自动整理选择的java代码 alt+/ 生成无参构造器或者提升信息 alt+shift+s+o 生成带参构造 ctrl+shift+o快速导 ...