[Apio2012]dispatching

时间限制: 1 Sec  内存限制: 128 MB

题目描述

在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿。在这个帮派里,有一名忍者被称之为 Master。除了 Master以外,每名忍者都有且仅有一个上级。为保密,同时增强忍者们的领导力,所有与他们工作相关的指令总是由上级发送给他的直接下属,而不允许通过其他的方式发送。现在你要招募一批忍者,并把它们派遣给顾客。你需要为每个被派遣的忍者 支付一定的薪水,同时使得支付的薪水总额不超过你的预算。另外,为了发送指令,你需要选择一名忍者作为管理者,要求这个管理者可以向所有被派遣的忍者 发送指令,在发送指令时,任何忍者(不管是否被派遣)都可以作为消息的传递 人。管理者自己可以被派遣,也可以不被派遣。当然,如果管理者没有被排遣,就不需要支付管理者的薪水。你的目标是在预算内使顾客的满意度最大。这里定义顾客的满意度为派遣的忍者总数乘以管理者的领导力水平,其中每个忍者的领导力水平也是一定的。写一个程序,给定每一个忍者 i的上级 Bi,薪水Ci,领导力L i,以及支付给忍者们的薪水总预算 M,输出在预算内满足上述要求时顾客满意度的最大值。
1  ≤N ≤ 100,000 忍者的个数;
1  ≤M ≤ 1,000,000,000 薪水总预算;
0  ≤Bi < i  忍者的上级的编号;
1  ≤Ci ≤ M  忍者的薪水;

1  ≤Li ≤ 1,000,000,000 忍者的领导力水平。

输入

从标准输入读入数据。
第一行包含两个整数 N M,其中 N表示忍者的个数,M表示薪水的总预算。
接下来 N行描述忍者们的上级、薪水以及领导力。其中的第 i 行包含三个整 Bi , C i , L i分别表示第i个忍者的上级,薪水以及领导力。Master满足B i = 0并且每一个忍者的老板的编号一定小于自己的编号 Bi < i

输出

输出一个数,表示在预算内顾客的满意度的最大值。

样例输入

5 4
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1

样例输出

6

提示

如果我们选择编号为 1的忍者作为管理者并且派遣第三个和第四个忍者,薪水总和为 4,没有超过总预算4。因为派遣了2个忍者并且管理者的领导力为3,用户的满意度为 2 ,是可以得到的用户满意度的最大值。

题解:

这是一道左偏树的裸题,既可以用深搜,也可以用广搜,深搜简单,广搜直观,小编用的是广搜。

建立左偏树。(用大根堆,因为只跟忍者的个数有关,所以被删除的工资越大越好)

从叶子借点向上广搜,不断合并节点,然后不断删除堆顶直到总工资小于m。

然后广搜入队的时候特判一下,一面忽略叶子节点的可能性。

一下是AC代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
#include<ctime>
using namespace std;
int n,m;
int father[],cnt[];
long long sum[],num[],skill[];
queue<int>mem;
struct node
{
long long key;
int dist;
node *l,*r;
int ldist(){return l?l->dist:;}
int rdist(){return r?r->dist:;}
} man[];
node *pos=man,*root[];
int read()
{
int ans=,f=;
char i=getchar();
while(i<''||i>''){if(i=='-')f=-;i=getchar();}
while(i>=''&&i<=''){ans=ans*+i-'';i=getchar();}
return ans*f;
}
node* merge(node* a,node* b)
{
if(!a||!b)return a?a:b;
if(a->key<b->key)swap(a,b);
a->r=merge(a->r,b);
if(a->ldist()<a->rdist())swap(a->l,a->r);
a->dist=a->rdist()+;
return a;
}
void delet(int x)
{
num[x]--;
sum[x]-=root[x]->key;
root[x]=merge(root[x]->l,root[x]->r);
}
int main()
{
int i,j;
long long ans=;
n=read();
m=read();
for(i=; i<=n; i++)
{
father[i]=read();
cnt[father[i]]++;
scanf("%lld",&sum[i]);
pos++;
pos->key=sum[i];
pos->l=pos->r=NULL;
num[i]=;
root[i]=pos;
scanf("%lld",&skill[i]);
}
for(i=; i<=n; i++)
if(!cnt[i])
{
mem.push(i);
ans=max(ans,skill[i]);
}
while(!mem.empty())
{
int x=mem.front();
mem.pop();
int fa=father[x];
root[fa]=merge(root[fa],root[x]);
cnt[fa]--;
sum[fa]+=sum[x];
num[fa]+=num[x];
if(!cnt[fa])
{
while(sum[fa]>m)delet(fa);
ans=max(ans,skill[fa]*num[fa]);
if(father[fa])mem.push(fa);
}
}
cout<<ans<<endl;
return ;
}

[Apio2012]dispatching的更多相关文章

  1. 【bzoj2809】[Apio2012]dispatching 左偏树

    2016-05-31  15:56:57 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 直观的思想是当领导力确定时,尽量选择薪水少的- ...

  2. BZOJ 2809: [Apio2012]dispatching( 平衡树 + 启发式合并 )

    枚举树上的每个结点做管理者, 贪心地取其子树中薪水较低的, 算出这个结点为管理者的满意度, 更新答案. 用平衡树+启发式合并, 时间复杂度为O(N log²N) ------------------- ...

  3. bzoj2809 [Apio2012]dispatching(左偏树)

    [Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 M ...

  4. [Apio2012]dispatching 主席树做法

    bzoj 2809: [Apio2012]dispatching http://www.lydsy.com/JudgeOnline/problem.php?id=2809 Description 在一 ...

  5. 【BZOJ2809】[Apio2012]dispatching 可并堆

    [BZOJ2809][Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 M ...

  6. bzoj 2809: [Apio2012]dispatching -- 可并堆

    2809: [Apio2012]dispatching Time Limit: 10 Sec  Memory Limit: 128 MB Description 在一个忍者的帮派里,一些忍者们被选中派 ...

  7. 【BZOJ 2809】2809: [Apio2012]dispatching (左偏树)

    2809: [Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Maste ...

  8. 2809: [Apio2012]dispatching

    2809: [Apio2012]dispatching Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 3102  Solved: 1641 [Sub ...

  9. BZOJ2809: [Apio2012]dispatching

    传送门 主席树经典题. 首先把树搞出来,然后搞出来DFS序.然后离散化点权,在DFS序上建立主席树. 对于每个点对应的区间,查找对应的区间最大的点数即可. //BZOJ2809 //by Cydiat ...

随机推荐

  1. 最大流算法之EK(最短路径增广算法)

    这是网络流最基础的部分--求出源点到汇点的最大流(Max-Flow). 最大流的算法有比较多,本次介绍的是其中复杂度较高,但是比较好写的EK算法.(不涉及分层,纯粹靠BFS找汇点及回溯找最小流量得到最 ...

  2. IOS(二)基本控件UIButton、简易动画、transform属性、UIImageView

    UIButton //1.设置UIButton 的左右移动 .center属性 获得 CGPoint 来修改x y //1.设置UIButton 的放大缩小 bounds属性 获得CGRect 然后通 ...

  3. Firefox实用插件记录

    之前总结过一个软件推荐的小文,用来记录一直以来在软件开发过程中遇到的各种实用的软件.后来发现里面越来越多的记录了Firefox的插件,所以今天决定单独抽出一个页面来记录Firefox的插件.因为平时大 ...

  4. android webview和 javascript 进行交互

    HTML5进行app开发具有开发快,跨平台等优点,但是当客户需要访问照相机或者调用摄像头等硬件的时候,H5就会有限制,必须要调用原生方法进行设备访问.下面简要介绍JS和原生方法互相调用的方法: 1 在 ...

  5. Redis学习-发布/订阅

    Redis 发布订阅(pub/sub)是一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息.Redis 客户端可以订阅任意数量的频道. 常用命令 命令 描述 复杂度 返回 PSUBS ...

  6. JAVA并发编程实战---第三章:对象的共享

    在没有同步的情况下,编译器.处理器以及运行时等都可能对操作的执行顺序进行一些意想不到的调整.在缺乏足够同步的多线程程序中,要对内存操作的执行顺序进行判断几乎无法得到正确的结果. 非原子的64位操作 当 ...

  7. 基于HTML5快速搭建TP-LINK电信拓扑设备面板

    今天我们以真实的TP-LINK设备面板为模型,完成设备面板的搭建,和指示灯的闪烁和图元流动. 先来目睹下最终的实现效果:http://www.hightopo.com/demo/blog_tplink ...

  8. php 使用composer

    之前写过相关的composer,之后碰到了几个朋友问我,我整理了一下,方便自己也方便大家日后查阅~~不玩开源的程序员不是好厨子     1.执行在线安装         curl -sS https: ...

  9. 让python bottle框架支持jquery ajax的RESTful风格的PUT和DELETE等请求

    这两天在用python的bottle框架开发后台管理系统,接口约定使用RESTful风格请求,前端使用jquery ajax与接口进行交互,使用POST与GET请求时都正常,而Request Meth ...

  10. Session Cookie的HttpOnly和secure属性

    Session Cookie的HttpOnly和secure属性 一.属性说明: 1 secure属性 当设置为true时,表示创建的 Cookie 会被以安全的形式向服务器传输,也就是只能在 HTT ...