Description

Farmer John's family pitches in with the chores during milking, doing all the chores as quickly as possible. At FJ's house, some chores cannot be started until others have been completed, e.g., it is impossible to wash the cows until they are in the stalls. 



Farmer John has a list of N (3 <= N <= 10,000) chores that must be completed. Each chore requires an integer time (1 <= length of time <= 100) to complete and there may be other chores that must be completed before this chore is started. We will call these
prerequisite chores. At least one chore has no prerequisite: the very first one, number 1. Farmer John's list of chores is nicely ordered, and chore K (K > 1) can have only chores 1,.K-1 as prerequisites. Write a program that reads a list of chores from 1
to N with associated times and all perquisite chores. Now calculate the shortest time it will take to complete all N chores. Of course, chores that do not depend on each other can be performed simultaneously.

Input

* Line 1: One integer, N 



* Lines 2..N+1: N lines, each with several space-separated integers. Line 2 contains chore 1; line 3 contains chore 2, and so on. Each line contains the length of time to complete the chore, the number of the prerequisites, Pi, (0 <= Pi <= 100), and the Pi
prerequisites (range 1..N, of course). 

Output

A single line with an integer which is the least amount of time required to perform all the chores. 

       原题很简单,就是给定N个任务的时间和每个任务的前驱,求最短完成时间。
       初步研究,此题可以用最长路或是拓扑图来求解。

        vijos上有一道“休息中的小呆”,原理和此类似,然而那儿N<=100,N^3也绰绰有余,我就用floyd算法求出最长路并记录。然而现在的N<=10000,就连N^2也很危险。

        第一次,我打算也是用最长路求解。咨询过鼎神,目前只有SPFA可以有效处理最长路问题。方法就是把每条边的权值取相反数并做一遍最短路,答案再取相反数。因为N有10000而边数不知道,只好开一个边表记录。

代码一(SPFA最长路+边表优化)
#include<stdio.h>
#include<cstring>
using namespace std;
const long maxn=10001;const long INF=1;
bool flag[maxn];long cnt,i,n,j,xx,time,y,h,t,go,now,ans,tong;
long dis[maxn],begin[maxn],end[maxn],x[200*maxn];
struct arr{long l,r,s,next;}a[200*maxn];
void make_up(long l,long r,long v)
{
  a[++cnt].l=l;a[cnt].r=r;a[cnt].s=-v;a[cnt].next=-1;
  if (begin[l]==0) {begin[l]=cnt;end[l]=cnt;}
  else {a[end[l]].next=cnt;end[l]=cnt;}
}
int main()
{
  //freopen("chores.in","r",stdin);freopen("chores.out","w",stdout);
  scanf("%ld",&n);
  for (i=1;i<=n;i++)
  {
    scanf("%ld",&time);
    scanf("%ld",&xx);
    for (j=1;j<=xx;j++)
    {
      scanf("%ld",&y);
      make_up(y,i,time);
    }
    if (xx==0) make_up(0,i,time);
  }
  memset(flag,0,sizeof(flag));memset(dis,INF,sizeof(dis));
  h=0;t=1;x[1]=0;dis[0]=0;flag[0]=true;
  while (h<t)
  {
     now=x[++h];if (begin[now]==0) continue;i=begin[now];
     while (true)
     {
       go=a[i].r;
       if (dis[now]+a[i].s<dis[go])
       {
         dis[go]=dis[now]+a[i].s;
         if (!flag[go])
         {
           flag[go]=true;
           x[++t]=go;
         }
       }
       if (a[i].next==-1) break;i=a[i].next;
     }
     flag[now]=false;
  }
  for (i=1;i<=n;i++)
    if (-dis[i]>ans) ans=-dis[i];

  printf("%ld",ans);
  //scanf("%ld",&n);
  return 0;
}

然而交了之后一直TLE,自己下了个数据,发现最后一个点大概要13s左右!想不到在稠密图里,SPFA的效率又如此之低!(边表的常数又很大)无论怎么优化都不行!

       
       最后只能请教互联网了,没想到,其他大牛的代码如此简单!他们用了近似DP的算法!

代码二(据网上思路改编代码)
#include<stdio.h>
#include<cstring>
using namespace std;
long f[10001],n,i,j,max,ans,xx,y;
int main()
{
  //freopen("chores.in","r",stdin);freopen("chores.out","w",stdout);
  scanf("%ld",&n);
  for (i=1;i<=n;i++)
  {
    scanf("%ld",&f[i]);
    scanf("%ld",&xx);max=0;
    for (j=1;j<=xx;j++)
    {
      scanf("%ld",&y);
      if (f[y]>max) max=f[y];
    }
    f[i]+=max;
    if (f[i]>ans) ans=f[i];
  }
  printf("%ld",ans);
  //scanf("%ld",&n);
  return 0;
}

然而仔细一想,我发现他们只是钻了一个数据的漏洞——刚好数据的前后关系是由小到大的。思考了很长时间,我研究出了一个更加高级的算法——记忆化深搜+边表优化!


代码三(最终AC的代码)
#include<stdio.h>
#include<cstring>
using namespace std;
const long maxn=10001;const long INF=1;
long time[maxn],dp[maxn],begin[maxn],end[maxn],cnt,j,n,i,x,y,ans;
struct arr{long l,r,next;}a[200*maxn];
void make_up(long l,long r)
{
  a[++cnt].l=l;a[cnt].r=r;a[cnt].next=-1;
  if (begin[l]==0) {begin[l]=cnt;end[l]=cnt;}
  else {a[end[l]].next=cnt;end[l]=cnt;}
}
long go(long k)
{
  if (dp[k]>0) return dp[k];
  long now=begin[k];
  while (now>0)
  {
    long temp=go(a[now].r);
    dp[k]=(temp>dp[k])?temp:dp[k];
    now=a[now].next;
  }
  dp[k]+=time[k];
  return dp[k];
}
int main()
{
  //freopen("chores.in","r",stdin);freopen("chores.out","w",stdout);
  scanf("%ld",&n);
  for (i=1;i<=n;i++)
  {
    scanf("%ld",&time[i]);
    scanf("%ld",&x);
    for (j=1;j<=x;j++)
    {
      scanf("%ld",&y);make_up(i,y);
    }
    if (x==0) dp[i]=time[i];
  }
  for (i=1;i<=n;i++)
  {
    long temp=go(i);
    ans=(temp>ans)?temp:ans;
  }
  printf("%ld",ans);
  //scanf("%ld",&n);
  return 0;
}

希望众神牛看到后能够留言指导!


usaco 2002 月赛 Chores 题解的更多相关文章

  1. usaco 2002 月赛 Fiber Communications 题解

    Description Farmer John wants to connect his N (1 <= N <= 1,000) barns (numbered 1..N) with a ...

  2. POJ1944 Fiber Communications (USACO 2002 February)

    Fiber Communications 总时间限制:  1000ms 内存限制:  65536kB 描述 Farmer John wants to connect his N (1 <= N ...

  3. csu-2018年11月月赛Round2-div1题解

    csu-2018年11月月赛Round2-div1题解 A(2191):Wells的积木游戏 Description Wells有一堆N个积木,标号1~N,每个标号只出现一次 由于Wells是手残党, ...

  4. csu-2018年11月月赛Round2-div2题解

    csu-2018年11月月赛Round2-div2题解 A(2193):昆虫繁殖 Description 科学家在热带森林中发现了一种特殊的昆虫,这种昆虫的繁殖能力很强.每对成虫过x个月产y对卵,每对 ...

  5. usaco 2008 月赛 lites 开关灯 题解

      题目:     Farmer John尝试通过和奶牛们玩益智玩具来保持他的奶牛们思维敏捷. 其中一个大型玩具是 牛栏中的灯. N (2 <= N <= 100,000) 头奶牛中的每一 ...

  6. USACO全部月赛及GateWay数据

    月赛: 以07年open为例,网站如下 http://contest.usaco.org/OPEN07 其他的格式是http://contest.usaco.org/月份(月份的英文前三位,比如1月是 ...

  7. USACO Section 1.3 题解 (洛谷OJ P1209 P1444 P3650 P2693)

    usaco ch1.4 sort(d , d + c, [](int a, int b) -> bool { return a > b; }); 生成与过滤 generator&& ...

  8. 洛谷10月月赛II题解

    [咻咻咻] (https://www.luogu.org/contestnew/show/11616) 令人窒息的洛谷月赛,即将参加NOIp的我竟然只会一道题(也可以说一道也不会),最终145的我只能 ...

  9. BZOJ Lydsy5月月赛 ADG题解

    题目链接 BZOJ5月月赛 题解 好弱啊QAQ只写出三题 A 判断多干个数乘积是否是某个数的倍数有很多方法,比较常用的是取模,但这里并不适用,因为模数不定 会发现数都比较小,所以我们可以考虑分解质因子 ...

随机推荐

  1. javaWeb学习总结(4)- HttpServletResponse

    一.简介: Web服务器收到客户端的http请求,会针对每一次请求,分别创建一个用于代表请求的request对象.和代表响应的response对象. request和response对象即然代表请求和 ...

  2. Mysql5.7忘记root密码及修改root密码的方法

    Mysql 安装成功后,输入 mysql --version 显示版本如下 mysql Ver 14.14 Distrib 5.7.13-6, for Linux (x86_64) using 6.0 ...

  3. click和blur事件冲突解决方案

    场景:例如做一个模仿百度搜索的搜索框,输入文字下面会有匹配项,当点击下拉项中的值时,就将值添加到搜索框中同时隐藏下拉框,点击其他地方就直接隐藏下拉框,这时所需要的事件分别为 下拉框事件onclick, ...

  4. First release of mlrMBO - the toolbox for (Bayesian) Black-Box Optimization

    We are happy to finally announce the first release of mlrMBO on cran after a quite long development ...

  5. xjoi 2082: 小明的序列

    本文为博主原创文章,未均允许…… 反正我也没法管对吧 www点cnblogs点com/AwD-/ 维护一个序列,初始全为\(1\) 支持两种操作: 1.对于所有的位置\(i\),将它的值乘上\(i + ...

  6. 是时候开始用C#快速开发移动应用了

    从2015年接触Xamarin到至今已经2个年头,我对Xamarin的技能没有长进多少,但它却已经足够成熟到在跨平台移动开发工具中占有一席之地.在扫了一些资料之后,突然发现国外有很多移动端的应用已经是 ...

  7. NLTK学习笔记(三):NLTK的一些工具

    主要总结一下简单的工具:条件频率分布.正则表达式.词干提取器和归并器. 条件分布频率 <自然语言学习>很多地方都用到了条件分布频率,nltk提供了两种常用的接口:FreqDist 和 Co ...

  8. java中调用本地动态链接库(*.DLL)的两种方式详解和not found library、打包成jar,war包dll无法加载等等问题解决办法

    我们经常会遇到需要java调用c++的案例,这里就java调用DLL本地动态链接库两种方式,和加载过程中遇到的问题进行详细介绍 1.通过System.loadLibrary("dll名称,不 ...

  9. js禁止浏览器的回退事件

    直接来个终极方案: 查找了好多资料才找到的,这种方式,可以消除 后退的所有动作.包括 键盘.鼠标手势等产生的后退动作. <script language="javascript&quo ...

  10. 微信公众平台开发实战Java版之如何网页授权获取用户基本信息

    第一部分:微信授权获取基本信息的介绍 我们首先来看看官方的文档怎么说: 如果用户在微信客户端中访问第三方网页,公众号可以通过微信网页授权机制,来获取用户基本信息,进而实现业务逻辑. 关于网页授权回调域 ...