Joanna Zhao’s and Jenny Bryan’s R graph catalog is meant to be a complement to the physical book,Creating More Effective Graphs, but it’s a really nice gallery in its own right. The catalog shows a series of different data visualizations, all made with R and ggplot2. Click on any of the plots and you get the R code necessary to generate the data and produce the plot.
 
You can use the panel on the left to filter by plot type, graphical elements, or the chapter of the book if you’re actually using it. All of the code and data used for this website is open-source, in this GitHub repository. Here's an example for plotting population demographic data by county that uses faceting to create small multiples:
library(ggplot2)
library(reshape2)
library(grid) this_base = "fig08-15_population-data-by-county" my_data = data.frame(
Race = c("White", "Latino", "Black", "Asian American", "All Others"),
Bronx = c(194000, 645000, 415000, 38000, 40000),
Kings = c(855000, 488000, 845000, 184000, 93000),
New.York = c(703000, 418000, 233000, 143000, 39000),
Queens = c(733000, 556000, 420000, 392000, 128000),
Richmond = c(317000, 54000, 40000, 24000, 9000),
Nassau = c(986000, 133000, 129000, 62000, 24000),
Suffolk = c(1118000, 149000, 92000, 34000, 26000),
Westchester = c(592000, 145000, 123000, 41000, 23000),
Rockland = c(205000, 29000, 30000, 16000, 6000),
Bergen = c(638000, 91000, 43000, 94000, 18000),
Hudson = c(215000, 242000, 73000, 57000, 22000),
Passiac = c(252000, 147000, 60000, 18000, 12000)) my_data_long = melt(my_data, id = "Race",
variable.name = "county", value.name = "population") my_data_long$county = factor(
my_data_long$county, c("New.York", "Queens", "Kings", "Bronx", "Nassau",
"Suffolk", "Hudson", "Bergen", "Westchester",
"Rockland", "Richmond", "Passiac")) my_data_long$Race =
factor(my_data_long$Race,
rev(c("White", "Latino", "Black", "Asian American", "All Others"))) p = ggplot(my_data_long, aes(x = population / 1000, y = Race)) +
geom_point() +
facet_wrap(~ county, ncol = 3) +
scale_x_continuous(breaks = seq(0, 1000, 200),
labels = c(0, "", 400, "", 800, "")) +
labs(x = "Population (thousands)", y = NULL) +
ggtitle("Fig 8.15 Population Data by County") +
theme_bw() +
theme(panel.grid.major.y = element_line(colour = "grey60"),
panel.grid.major.x = element_blank(),
panel.grid.minor = element_blank(),
panel.margin = unit(0, "lines"),
plot.title = element_text(size = rel(1.1), face = "bold", vjust = 2),
strip.background = element_rect(fill = "grey80"),
axis.ticks.y = element_blank()) p ggsave(paste0(this_base, ".png"),
p, width = 6, height = 8)
 
Keep in mind not all of these visualizations are recommended. You’ll find pie charts, ugly grouped bar charts, and other plots for which I can’t think of any sensible name. Just because you can use the add_cat() function from Hilary Parker’s cats package to fetch a random cat picture from the internet and create an annotation_raster layer to add to your ggplot2 plot, doesn’t necessarily mean you shoulddo such a thing for a publication-quality figure. But if you ever needed to know how, this R graph catalog can help you out.
library(ggplot2)

this_base = "0002_add-background-with-cats-package"

## devtools::install_github("hilaryparker/cats")
library(cats)
## library(help = "cats") p = ggplot(mpg, aes(cty, hwy)) +
add_cat() +
geom_point()
p ggsave(paste0(this_base, ".png"), p, width = 6, height = 5)

R + ggplot2 Graph Catalog(转)的更多相关文章

  1. R ggplot2 线性回归

    摘自  http://f.dataguru.cn/thread-278300-1-1.html library(ggplot2) x=1:10y=rnorm(10)a=data.frame(x= x, ...

  2. R & ggplot2 & Excel绘图(直方图/经验分布图/QQ图/茎叶图/箱线图)实例

    持续更新~ 散点图 条形图 文氏图 饼图 盒型图 频率直方图 热图 PCA图 3D图 火山图 分面图 分面制作小多组图 地图 练习数据: year count china Ame jap '12 2. ...

  3. R:ggplot2数据可视化——进阶(1)

    ,分为三个部分,此篇为Part1,推荐学习一些基础知识后阅读~ Part 1: Introduction to ggplot2, 覆盖构建简单图表并进行修饰的基础知识 Part 2: Customiz ...

  4. R:ggplot2数据可视化——基础知识

    1 安装 # 获取ggplot2 最容易的就是下载整个tidyverse: install.packages("tidyverse") # 也可以选择只下载ggplot2: ins ...

  5. R:ggplot2数据可视化——进阶(3)

    Part 3: Top 50 ggplot2 Visualizations - The Master List, 结合进阶1.2内容构建图形 有效的图形是: 不扭曲事实 传递正确的信息 简洁优雅 美观 ...

  6. R:ggplot2数据可视化——进阶(2)

    Part 2: Customizing the Look and Feel, 更高级的自定义化,比如说操作图例.注记.多图布局等  # Setup options(scipen=999) librar ...

  7. R ggplot2 翻转坐标

    p <- ggplot(mpg, aes(class, hwy)) p + geom_boxplot() p + geom_boxplot() + coord_flip()

  8. R ggplot2 改变颜色

    p<-ggplot(iris,aes(Petal.Length,Petal.Width,color=Species))+geom_point()cols=c("red",&q ...

  9. R语言中文社区历史文章整理(类型篇)

    R语言中文社区历史文章整理(类型篇)   R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterpl ...

随机推荐

  1. 3 安装Zookeeper

    cnblogs-DOC 1.服务器环境 2.安装Redis3.安装Zookeeper4.安装MPush5.安装Alloc服务6.完整测试7.常见问题 从官网直接下载Zookeeper最新版本(Zook ...

  2. sql解析xml

    我们有时候需要在sql中解析xml,xml解析sql实例如下:  DECLARE @params xml  DECLARE @customparams xml = null  -- 0.解析输入参数 ...

  3. java多线程基本概述(五)——线程通信

    线程之间的通信可以通过共享内存变量的方式进行相互通信,也可以使用api提供的wait(),notify()实现线程之间的通信.wait()方法是Object类的方法,改方法用来将当前的线程置入&quo ...

  4. 使用Spring标签<form:textarea>时,用readonly=“readonly”属性时不起作用。

    最近的一个项目用到了Spring标签<form:textarea>,当在设置其只读属性时,使用readonly="readonly"不起作用,还是能修改内容. 在网上找 ...

  5. 腾讯AlloyTeam正式发布Canvas魔幻线条 - curvejs

    [原文链接] ## 写在前面 curvejs 中文读["克js"],是腾讯AlloyTeam打造的一款魔幻线条框架,让线条成为一名优秀的舞者,让线条们成为优秀的舞团,HTML5 ...

  6. oracle 归档日志满 报错ORA-00257: archiver error. Connect internal only, until freed

    归档日志满导致无法用户无法登陆 具体处理办法 --用户登陆 Microsoft Windows [Version 6.1.7601] Copyright (c) Microsoft Corporati ...

  7. xml语法规则

    所有 XML 元素都须有关闭标签 在 HTML,经常会看到没有关闭标签的元素: <p>This is a paragraph <p>This is another paragr ...

  8. 仿:Android - 微信 - 朋友圈 - 小视频播放,多 4 句废话算我输

    作者:林冠宏 / 指尖下的幽灵 掘金:https://juejin.im/user/587f0dfe128fe100570ce2d8 博客:http://www.cnblogs.com/linguan ...

  9. Linux 3.2中回写机制的变革

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://alanwu.blog.51cto.com/3652632/1109952 wri ...

  10. selenium + python 登录页面,输入账号、密码,元素定位问题

    示例简介: 要求:登录QQ邮箱,输入账号.密码 出现问题:页面中含有iframe框架,因此直接进行元素的查找与操作,出现找不到元素的现象,首先需进行iframe框架的转换,使用switch_to_fr ...