\(\mathscr{Description}\)

  Link.

  原题意比较简洁了。注意一下卖出的菜也会变质,且让它们代替未卖出的菜变质是更优的。

\(\mathscr{Solution}\)

  一眼网络流,尝试建图。在原题意上建图的话我得到了一个五层结点的图……于是可以以逆向时间描述问题。不难得到模型:

  • \(S\) 连向 \((i,t)\),容量为菜 \(i\) 在 \(t\) 时刻变质的数量,费用为 \(a_i\);若 \(t\) 时刻后 \(i\) 全部变质,则分出一单位流量增加 \(s_i\) 的费用。
  • \((i,t)\) 连向 \((i,t-1)\),容量为 \(+\infty\),费用为 \(0\);
  • \((i,t)\) 连向 \(T_t\),容量为 \(+\infty\),费用为 \(0\);
  • \(T_t\) 连向 \(T\),容量为 \(m\),费用为 \(0\)。

  对于单个询问,该图的最大费用任意流(其实必然是最大流)费用就是答案。直接来貌似可以获得比较可观的分数。

  接下来,我们手动分析流网络,通过比较模式化的分析找到结论。

  考虑按(正向)时间顺序加入 \(T_t\) 及其连边的过程,从增广的角度思考答案的更新:

  图中 IV 的增广环不如仅走右侧蓝色路径的反向路径优秀;V 的增广环显然不是负环。因此,\(S\) 无法在残余网络上推流。回归到原问题,得到结论:当 \(t_1>t_2\),\(t_2\) 所选择的蔬菜集合是 \(t_1\) 的子集。如果我们求出 \(t_\max\),贪心地去掉最便宜的菜就能得到其他时刻的答案。

  求 \(t_\max\) 的答案?类似地分析可以发现,随着时间(逆向)向前,每种蔬菜的选取数量都会越来越多。因而可以维护现有蔬菜的堆,以及可能因为 \(S\) 的流量进入“复活”的蔬菜集合。模拟 \(T_t\) 从大到小向 \(T\) 增广的过程即可。

  复杂度 \(\mathcal O(nm\log n)\)。

\(\mathscr{Code}\)

/*+Rainybunny+*/

#include <bits/stdc++.h>

#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i) typedef long long LL;
typedef std::pair<int, int> PII;
#define fi first
#define se second template <typename Tp>
inline void chkmin(Tp& u, const Tp& v) { v < u && (u = v, 0); }
template <typename Tp>
inline void chkmax(Tp& u, const Tp& v) { u < v && (u = v, 0); }
template <typename Tp>
inline Tp imin(const Tp& u, const Tp& v) { return u < v ? u : v; }
template <typename Tp>
inline Tp imax(const Tp& u, const Tp& v) { return u < v ? v : u; } const int MAXN = 1e5, MAXM = 10;
int n, m, k, a[MAXN + 5], s[MAXN + 5], c[MAXN + 5], x[MAXN + 5], p[MAXN + 5];
int sold[MAXN + 5], wait[MAXN + 5];
LL ans[MAXN * MAXM + 5];
std::vector<int> imp[MAXN + 5]; int main() {
scanf("%d %d %d", &n, &m, &k);
rep (i, 1, n) scanf("%d %d %d %d", &a[i], &s[i], &c[i], &x[i]);
rep (i, 1, k) scanf("%d", &p[i]); int mxt = *std::max_element(p + 1, p + k + 1);
rep (i, 1, n) {
if (!x[i]) imp[mxt].push_back(i);
else imp[imin(mxt, (c[i] + x[i] - 1) / x[i])].push_back(i);
} std::priority_queue<PII> heap;
per (i, mxt, 1) {
for (int j: imp[i]) wait[++wait[0]] = j;
rep (i, 1, wait[0]) {
heap.emplace(sold[wait[i]] ? a[wait[i]]
: a[wait[i]] + s[wait[i]], wait[i]);
}
wait[0] = 0;
for (int rst = m; rst-- && !heap.empty();) {
int u = heap.top().se;
++sold[u], heap.pop();
if (c[u] - (i - 1) * x[u] > sold[u]) heap.emplace(a[u], u);
else if (x[u]) wait[++wait[0]] = u;
}
} rep (i, 1, n) if (sold[i]) {
ans[++ans[0]] = a[i] + s[i];
while (--sold[i]) ans[++ans[0]] = a[i];
}
std::sort(ans + 1, ans + ans[0] + 1);
std::reverse(ans + 1, ans + ans[0] + 1);
rep (i, 2, ans[0]) ans[i] += ans[i - 1];
int all = ans[0]; ans[0] = 0;
rep (i, 1, k) printf("%lld\n", ans[imin(all, p[i] * m)]);
return 0;
}

Solution -「NOI 2017」「洛谷 P3826」蔬菜的更多相关文章

  1. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  2. [CodePlus 2017 11月赛&洛谷P4058]木材 题解(二分答案)

    [CodePlus 2017 11月赛&洛谷P4058]木材 Description 有 n棵树,初始时每棵树的高度为 Hi ,第 i棵树每月都会长高 Ai.现在有个木料长度总量为 S的订单, ...

  3. Solution -「JSOI 2019」「洛谷 P5334」节日庆典

    \(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\time ...

  4. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  5. Solution -「POI 2010」「洛谷 P3511」MOS-Bridges

    \(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...

  6. Solution -「APIO 2016」「洛谷 P3643」划艇

    \(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...

  7. 「洛谷 P1801」黑匣子

    好像很久没有更过博客了,因为博主这几周很忙.其实是在搞颓. 题意很难懂,所以就不重复了.其实是懒. 一眼看上去这是个 \(Splay\) 裸题,直接插入一个数,查询区间第 \(K\) 大,但是这样太不 ...

  8. 「洛谷4197」「BZOJ3545」peak【线段树合并】

    题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...

  9. 「洛谷3338」「ZJOI2014」力【FFT】

    题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...

  10. 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】

    题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...

随机推荐

  1. win10下端口映射设置内网别人访问本机安装的vmware默认NAT网络

    用管理员权限打开powershell或者cmd,命令如下 netsh interface portproxy add v4tov4 listenaddress=0.0.0.0 listenport=主 ...

  2. SQL 清除数据库中所有表的数据

    进行数据库的操作,有时候我们需要清除数据库中所有的数据,如果你不嫌麻烦,可以一次一次的执行truncate操作,但是如果遇到有无数个表的情况,这种操作无疑是很耗时的 我曾经百度别人的代码,看都没看就直 ...

  3. 【问题解决】java.lang.SecurityException: JCE cannot authenticate the provider BC

    问题复现 历史项目升级JDK(由1.7升级到8),进行加密/解密时出现报错java.lang.SecurityException: JCE cannot authenticate the provid ...

  4. 0.1 Introduction to the tenth anniversary edition

    此序作于2010年 1970s&1980s, 除了将量子系统仅仅视为一种自然界中需要解释的现象,大家开始将其视为可以设计的系统. 这种新的观点引起了物理,计算机科学和信息理论等领域交叉融合之后 ...

  5. openEuler搭建k8s(1.28.2版本)

    目录 k8s搭建(1.28.2版本) 1. 安装containerd 1.1 下载tar包 1.2 编写服务单元文件 2. 安装runc 3. 安装cni插件 3.1 下载文件 3.2 设置crict ...

  6. API13Bate版来了DevEco已更新快来看新功能吧

    HarmonyOS 5.0.1 Beta3,是HarmonyOS开发套件基于API 13正式发布的首个Beta版本.该版本在OS能力上主要增强了C API的相关能力,多个特性补充了C API供开发者使 ...

  7. IPC-7093A-CN 中文 2020底部端子元器件(BTCs)设计和组装工艺的实施

    IPC-7093A 标准为实施底部端子元器件(BTCs)提供了基本的设计和组装指南.具体而言,IPC-7093A 提供了与 BTCs 相关的关键设计.材料.组装.检查.维修.质量和可靠性问题的指南. ...

  8. Navicat Premium 16下载与安装

    1.可以通过以下两种方式下载 a.官网下载地址 https://www.navicat.com.cn/download/navicat-premium b.百度网盘下载地址 链接:https://pa ...

  9. 【一步步开发AI运动小程序】十四、主包超出2M大小限制,如何将插件分包发布?

    随着人工智能技术的不断发展,阿里体育等IT大厂,推出的"乐动力"."天天跳绳"AI运动APP,让云上运动会.线上运动会.健身打卡.AI体育指导等概念空前火热.那 ...

  10. 【一步步开发AI运动小程序】六、人体骨骼图绘制

    随着人工智能技术的不断发展,阿里体育等IT大厂,推出的"乐动力"."天天跳绳"AI运动APP,让云上运动会.线上运动会.健身打卡.AI体育指导等概念空前火热.那 ...