Solution -「NOI 2017」「洛谷 P3826」蔬菜
\(\mathscr{Description}\)
Link.
原题意比较简洁了。注意一下卖出的菜也会变质,且让它们代替未卖出的菜变质是更优的。
\(\mathscr{Solution}\)
一眼网络流,尝试建图。在原题意上建图的话我得到了一个五层结点的图……于是可以以逆向时间描述问题。不难得到模型:
- \(S\) 连向 \((i,t)\),容量为菜 \(i\) 在 \(t\) 时刻变质的数量,费用为 \(a_i\);若 \(t\) 时刻后 \(i\) 全部变质,则分出一单位流量增加 \(s_i\) 的费用。
- \((i,t)\) 连向 \((i,t-1)\),容量为 \(+\infty\),费用为 \(0\);
- \((i,t)\) 连向 \(T_t\),容量为 \(+\infty\),费用为 \(0\);
- \(T_t\) 连向 \(T\),容量为 \(m\),费用为 \(0\)。
对于单个询问,该图的最大费用任意流(其实必然是最大流)费用就是答案。直接来貌似可以获得比较可观的分数。
接下来,我们手动分析流网络,通过比较模式化的分析找到结论。
考虑按(正向)时间顺序加入 \(T_t\) 及其连边的过程,从增广的角度思考答案的更新:

图中 IV 的增广环不如仅走右侧蓝色路径的反向路径优秀;V 的增广环显然不是负环。因此,\(S\) 无法在残余网络上推流。回归到原问题,得到结论:当 \(t_1>t_2\),\(t_2\) 所选择的蔬菜集合是 \(t_1\) 的子集。如果我们求出 \(t_\max\),贪心地去掉最便宜的菜就能得到其他时刻的答案。
求 \(t_\max\) 的答案?类似地分析可以发现,随着时间(逆向)向前,每种蔬菜的选取数量都会越来越多。因而可以维护现有蔬菜的堆,以及可能因为 \(S\) 的流量进入“复活”的蔬菜集合。模拟 \(T_t\) 从大到小向 \(T\) 增广的过程即可。
复杂度 \(\mathcal O(nm\log n)\)。
\(\mathscr{Code}\)
/*+Rainybunny+*/
#include <bits/stdc++.h>
#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i)
typedef long long LL;
typedef std::pair<int, int> PII;
#define fi first
#define se second
template <typename Tp>
inline void chkmin(Tp& u, const Tp& v) { v < u && (u = v, 0); }
template <typename Tp>
inline void chkmax(Tp& u, const Tp& v) { u < v && (u = v, 0); }
template <typename Tp>
inline Tp imin(const Tp& u, const Tp& v) { return u < v ? u : v; }
template <typename Tp>
inline Tp imax(const Tp& u, const Tp& v) { return u < v ? v : u; }
const int MAXN = 1e5, MAXM = 10;
int n, m, k, a[MAXN + 5], s[MAXN + 5], c[MAXN + 5], x[MAXN + 5], p[MAXN + 5];
int sold[MAXN + 5], wait[MAXN + 5];
LL ans[MAXN * MAXM + 5];
std::vector<int> imp[MAXN + 5];
int main() {
scanf("%d %d %d", &n, &m, &k);
rep (i, 1, n) scanf("%d %d %d %d", &a[i], &s[i], &c[i], &x[i]);
rep (i, 1, k) scanf("%d", &p[i]);
int mxt = *std::max_element(p + 1, p + k + 1);
rep (i, 1, n) {
if (!x[i]) imp[mxt].push_back(i);
else imp[imin(mxt, (c[i] + x[i] - 1) / x[i])].push_back(i);
}
std::priority_queue<PII> heap;
per (i, mxt, 1) {
for (int j: imp[i]) wait[++wait[0]] = j;
rep (i, 1, wait[0]) {
heap.emplace(sold[wait[i]] ? a[wait[i]]
: a[wait[i]] + s[wait[i]], wait[i]);
}
wait[0] = 0;
for (int rst = m; rst-- && !heap.empty();) {
int u = heap.top().se;
++sold[u], heap.pop();
if (c[u] - (i - 1) * x[u] > sold[u]) heap.emplace(a[u], u);
else if (x[u]) wait[++wait[0]] = u;
}
}
rep (i, 1, n) if (sold[i]) {
ans[++ans[0]] = a[i] + s[i];
while (--sold[i]) ans[++ans[0]] = a[i];
}
std::sort(ans + 1, ans + ans[0] + 1);
std::reverse(ans + 1, ans + ans[0] + 1);
rep (i, 2, ans[0]) ans[i] += ans[i - 1];
int all = ans[0]; ans[0] = 0;
rep (i, 1, k) printf("%lld\n", ans[imin(all, p[i] * m)]);
return 0;
}
Solution -「NOI 2017」「洛谷 P3826」蔬菜的更多相关文章
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- [CodePlus 2017 11月赛&洛谷P4058]木材 题解(二分答案)
[CodePlus 2017 11月赛&洛谷P4058]木材 Description 有 n棵树,初始时每棵树的高度为 Hi ,第 i棵树每月都会长高 Ai.现在有个木料长度总量为 S的订单, ...
- Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\time ...
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Solution -「POI 2010」「洛谷 P3511」MOS-Bridges
\(\mathcal{Description}\) Link.(洛谷上这翻译真的一言难尽呐. 给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...
- Solution -「APIO 2016」「洛谷 P3643」划艇
\(\mathcal{Description}\) Link & 双倍经验. 给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...
- 「洛谷 P1801」黑匣子
好像很久没有更过博客了,因为博主这几周很忙.其实是在搞颓. 题意很难懂,所以就不重复了.其实是懒. 一眼看上去这是个 \(Splay\) 裸题,直接插入一个数,查询区间第 \(K\) 大,但是这样太不 ...
- 「洛谷4197」「BZOJ3545」peak【线段树合并】
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
- 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】
题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...
随机推荐
- win10下端口映射设置内网别人访问本机安装的vmware默认NAT网络
用管理员权限打开powershell或者cmd,命令如下 netsh interface portproxy add v4tov4 listenaddress=0.0.0.0 listenport=主 ...
- SQL 清除数据库中所有表的数据
进行数据库的操作,有时候我们需要清除数据库中所有的数据,如果你不嫌麻烦,可以一次一次的执行truncate操作,但是如果遇到有无数个表的情况,这种操作无疑是很耗时的 我曾经百度别人的代码,看都没看就直 ...
- 【问题解决】java.lang.SecurityException: JCE cannot authenticate the provider BC
问题复现 历史项目升级JDK(由1.7升级到8),进行加密/解密时出现报错java.lang.SecurityException: JCE cannot authenticate the provid ...
- 0.1 Introduction to the tenth anniversary edition
此序作于2010年 1970s&1980s, 除了将量子系统仅仅视为一种自然界中需要解释的现象,大家开始将其视为可以设计的系统. 这种新的观点引起了物理,计算机科学和信息理论等领域交叉融合之后 ...
- openEuler搭建k8s(1.28.2版本)
目录 k8s搭建(1.28.2版本) 1. 安装containerd 1.1 下载tar包 1.2 编写服务单元文件 2. 安装runc 3. 安装cni插件 3.1 下载文件 3.2 设置crict ...
- API13Bate版来了DevEco已更新快来看新功能吧
HarmonyOS 5.0.1 Beta3,是HarmonyOS开发套件基于API 13正式发布的首个Beta版本.该版本在OS能力上主要增强了C API的相关能力,多个特性补充了C API供开发者使 ...
- IPC-7093A-CN 中文 2020底部端子元器件(BTCs)设计和组装工艺的实施
IPC-7093A 标准为实施底部端子元器件(BTCs)提供了基本的设计和组装指南.具体而言,IPC-7093A 提供了与 BTCs 相关的关键设计.材料.组装.检查.维修.质量和可靠性问题的指南. ...
- Navicat Premium 16下载与安装
1.可以通过以下两种方式下载 a.官网下载地址 https://www.navicat.com.cn/download/navicat-premium b.百度网盘下载地址 链接:https://pa ...
- 【一步步开发AI运动小程序】十四、主包超出2M大小限制,如何将插件分包发布?
随着人工智能技术的不断发展,阿里体育等IT大厂,推出的"乐动力"."天天跳绳"AI运动APP,让云上运动会.线上运动会.健身打卡.AI体育指导等概念空前火热.那 ...
- 【一步步开发AI运动小程序】六、人体骨骼图绘制
随着人工智能技术的不断发展,阿里体育等IT大厂,推出的"乐动力"."天天跳绳"AI运动APP,让云上运动会.线上运动会.健身打卡.AI体育指导等概念空前火热.那 ...