本文由vivo 互联网服务器团队Yu Quan分享,本文收录时有内容修订和重新排版。

1、引言

如今,Android端的即时通讯IM这类应用想实现离线消息推送,难度越来越大(详见《Android P正式版即将到来:后台应用保活、消息推送的真正噩梦》、《Android保活从入门到放弃:乖乖引导用户加白名单吧》)。

于是,使用手机厂商自建的ROOM级消息推送通道进行IM离线消息推送是个不得不面对的问题,我们也正好借此文机会,一窥主流手机厂商的ROOM级推送通道的技术实现吧。

vivo手机的厂商级消息推送系统的现状是最高推送速度140w/s,单日最大消息量200亿,端到端秒级在线送达率99.9%。同时推送系统具备不可提前预知的突发大流量特点。

本文将要分享的是vivo技术团队针对消息推送系统的高并发、高时效、突发流量等特点,从长连接层容灾、逻辑层容灾、流量容灾、存储容灾等方面入手,如何保证百亿级厂商消息推送平台的高可用性的。

* 推荐阅读:vivo技术团队分享的另一篇消息推送技术文章《vivo手机上的系统级消息推送平台的架构设计实践》。

 
技术交流:

(本文已同步发布于:http://www.52im.net/thread-4416-1-1.html

2、推送系统介绍

vivo推送平台是vivo公司向开发者提供的消息推送服务,通过在云端与客户端之间建立一条稳定、可靠的长连接,为开发者提供向客户端应用实时推送消息的服务,支持百亿级的通知/消息推送,秒级触达移动用户。

推送系统主要由3部分组成:

  • 1)接入网关;
  • 2)逻辑推送节点;
  • 3)长连接。

其中,长连接负责与用户手机终端建立连接,及时把消息送达到手机终端。

推送系统的特点是:

  • 1)并发高;
  • 2)消息量大;
  • 3)送达及时性较高。

下面将针对这几个方面来分享我们的技术实践。

3、长连接层容灾的技术实现

长连接是推送系统最重要的部分,长连接的稳定性直接决定了推送系统的推送质量和性能。因此,需要对长连接层做好容灾和实时调度能力。

3.1面临的问题

原有推送系统架构是长连接层都部署在华东,所有vivo IDC逻辑节点通过VPC与华东的Broker建立连接,手机端跟华东的broker进行长连接通信。

这种部署方式存在以下问题。

1)问题一:华北、华南手机都需要连接华东的Broker,地域跨度大,长连接网络稳定性和时效性相对较差。

2)问题二:逻辑层跟华东的Broker之间由一条VPC连接,随着业务的发展,推送流量越来越大,带宽会出现瓶颈,有超限丢包的风险。另外当该VPC出现故障时,会造成全网消息无法送达。

注:长连接层节点名为Broker。

原始长连接架构图:

3.2解决方法

基于以上架构存在问题,我们对架构进行了优化。即将Broker进行三地部署,分别部署在华北、华东、华南。

华北、华东、华南三地用户采用就近接入方式。

优化后的架构,不仅可以保证长连接网络稳定性和时效性。同时具有较强的容灾能力,华东、华南Broker通过云网跟华北Broker连接,华北Broker通过VPC与vivo IDC连接。当华北、华东、华南某个地区Broker集群故障或者公网故障,不会影响到全网设备收发消息。

三地部署后的架构图:

3.3进一步优化

但是上述这种方式还是存在一个问题,就是某个地区Broker集群故障或者公网故障,会出现该区域部分设备无法收到推送消息的情况。

针对上述单个地区异常导致该区域部分设备无法收到推送消息的问题,我们设计了一套流量调度系统,可以做到实时流量调度和切换。global scheduler节点负责策略调度和管理。

vivo phone进行注册时:dispatcher会下发多个地区的ip地址,默认情况下,进行就近连接。单多次连接失败后,尝试连接其他ip。当某个地区Broker出现长连接数瓶颈或者VPC出现故障,可以通过global scheduler节点下发策略,让该故障地区的设备重新从dispatcher获取新的ip集的ip,与其他地区Broker建立长连接,逻辑节点下发消息到重连后的Broker。等到该地区恢复后,可以重新再下发策略,进行回调。

流量调度系统图:

4、逻辑层容灾的技术实现

长连接层做好容灾后,逻辑层也需要做相应容灾。

之前我们逻辑层都部署在一个机房,不具备机房间容灾能力,当一个机房出现断电风险,会出现服务整体不可用问题,因此我们做"同城双活"部署方案改造。

逻辑层单活架构:

逻辑层分别在vivo IDC1和vivo IDC2进行部署,网关层根据路由规则将流量按照一定比例分别下发到两个IDC,实现逻辑层同城双活。

我们发现:数据中心还是只有一个,部署在vivo IDC1,根据成本、收益,以及多数据中心数据同步延迟问题综合考虑,数据中心暂时还是以单数据中心为主。

逻辑层双活架构:

5、流量容灾的技术实现

5.1概述

做好系统架构的容灾能力后,推送系统的网关层还需要应对突发流量做相应的应对措施,做好流量控制,保证系统稳定性。历史上,我们曾经因为热点和突发新闻事件,并发推送流量巨大,导致服务出现异常,可用性降低问题。

为了应对突发大流量,保证突发流量的情况下,系统可用性不变,同时能兼顾性能和成本。为此,我们分别对比了设计了以下两种方案。

5.2常规方案

常规的方案是一般是根据历史情况估算冗余部署大量机器,来应对突发流量。

单这种方式成本较高,突发流量可能只持续5分钟或更短时间,而系统为了满足5分钟突发流量,需要冗余部署大量机器。

一旦流量超过了部署机器可承担的上限,无法及时扩容,可能导致可用性下降,甚至出现雪崩效应。

传统方案下的推送架构:

那如何设计一套既可以控制成本,面对突发大流量弹性扩容,又保证消息不漏并兼顾推送性能的方案呢?

5.3优化方案

优化后的方案:

  • 1)在原有架构的基础上,在接入层增加缓冲通道,当流量洪峰到来时,对于系统可处理的上限能力外的流量,打入缓冲队列;
  • 2)通过消息队列形式,增加bypass接入层,限速消费消息队列;
  • 3)在流量洪峰过去后,提升bypass消费速度,处理缓存队列消息;
  • 4)bypass接入层通过docker部署,支持动态扩缩容,默认最小化集群,当消息队列积压很多,并且下游有能力处理时,提升消费速度,bypass根据CPU负载动态扩容,快速消费消息队列;
  • 5)处理完毕后动态缩容。

消息队列:选用吞吐量较大的KAFKA中间件,并且与离线计算KAFKA集群共用,能充分利用资源。

bypass接入层:采用docker部署,支持根据CPU负载和时间动态扩缩容。默认最小集群部署。对于已知的流量高峰时段,可以提前扩容服务,保证流量快速处理。未知时段流量高峰,可以bypass接入层,根据CPU负载情况进行动态扩缩容。

增加缓存队列后的推送架构:

5.4进一步优化

进行上述改造后:还存在一个问题,就是如何进行接入层全局控速。

我们采用的方式是:收集下游推送节点的推送流量情况。

比如:流量达到系统可承受上限的80%时下发限速指令,调整接入层推送速度。让消息先积压在消息队列,等到下游流量降低之后,下发解除限速指令,让bypass接入层加速消费消息队列,进行推送。

增加控速后的推送架构:

优化后方案与传统方案对比:

6、存储容灾的技术实现

6.1问题

做好并发流量控制后,能很好的预发突发热点问题。但在推送系统内部,由于使用Redis集群缓存消息,出现过因为Redis集群故障导致消息无法及时送达问题。

因此:我们考虑对Redis集群做相关容灾方案设计,实现系统在Redis集群故障期间,也能及时推送消息并保证消息不丢失。

推送消息体缓存在Redis集群中,推送时从Redis中获取消息体,如果Redis集群宕机,或者内存故障,会导致离线消息体丢失。

6.2方案

原有消息流程:

1)方案一:

引入另一个对等Redis集群,采用推送双写方式,双写两个Redis集群。该方案需要冗余部署规模对等的备Redis集群。推送系统需要双写Redis操作。

2)方案二:

原有Redis集群,采用RDB+AOF方式同步到另一个备Redis集群。

该方案不在需要推送系统双写Redis改造,直接利用将原有Redis集群数据同步到另一个备Redis集群。也需要冗余部署规模对等的备Redis集群。可能存在部分数据同步延迟导致推送失败问题。

3)方案三:

应用另一个分布式存储系统,磁盘KV,兼容Redis协议,同时具有持久化能力。可以保证消息体不丢失。但是为了节省成本,不再直接使用Redis集群对等资源。

而是根据推送特点,推送分为单推、群推。单推是一对一推送,一个用户一条消息体。群推是一对多推送,一个消息体对应多个用户。

群推往往是任务级别推送。因此我们使用一个相对小一些的磁盘KV集群,主要用于冗余存储,群推消息体,即任务级别的消息。对于单推,还是只保存到Redis中,不进行冗余存储。

如果Redis集群故障,对于单推消息,推送系统可以携带消息体往下游推送,确保消息可以继续下发。对于群推消息,因为消息体冗余存储在磁盘KV中,当Redis集群故障后,可以降级到读取磁盘KV。

6.3优化

方案三还存在一个问题,就是磁盘KV的写入性能和Redis集群不是一个数量级,特别是时延,磁盘KV在平均在5ms左右。

而Redis集群却在0.5ms。如果在推送系统对群推消息体进行双写。这个时延是不能接受的。

因此只能采用异步写入磁盘KV的方式。

这里将备份群推消息体,先写入消息中间件KAFKA,由bypass节点消费KAKFA进行异步写入磁盘KV。这样在使用的灾备磁盘KV资源较少的前提下,保证推送系统的高并发能力,同时可以保证群推消息体不丢失,Redis异常时,单推消息携带消息体推送,群推消息体读取磁盘KV。

存储容灾方案对比:

7、本文小结

本文从长连接层容灾、逻辑层容灾、流量容灾、存储容灾等几个方面讲述了推送系统容灾建设过程。系统容灾需要根据业务发展,成本收益,实现难度等多方面考虑。

当前我们长连接层已具备三地部署,逻辑层具备同城双活,数据中心为单数据中心。后续我们会持续研究和规划双数据中心,两地三中心部署架构方式来逐步加强推送系统容灾能力。

8、参考资料

[1] vivo手机上的系统级消息推送平台的架构设计实践

[2] 魅族2500万长连接的实时消息推送架构的技术实践分享

[3] 专访魅族架构师:海量长连接的实时消息推送系统的心得体会

[4] 百万在线的美拍直播弹幕系统的实时推送技术实践之路

[5] 京东京麦商家开放平台的消息推送架构演进之路

[6] 解密“达达-京东到家”的订单即时派发技术原理和实践

[7] 长连接网关技术专题(四):爱奇艺WebSocket实时推送网关技术实践

[8] 喜马拉雅亿级用户量的离线消息推送系统架构设计实践

[9] 微信直播聊天室单房间1500万在线的消息架构演进之路

[10] 百度直播的海量用户实时消息系统架构演进实践

[11] 消息推送技术干货:美团实时消息推送服务的技术演进之路

[12] 技术干货:从零开始,教你设计一个百万级的消息推送系统

9、vivo技术团队分享的其它文章

IM消息ID技术专题(七):深度解密vivo的自研分布式ID服务(鲁班)

直播系统聊天技术(八):vivo直播系统中IM消息模块的架构实践

IM跨平台技术学习(三):vivo的Electron技术栈选型、全方位实践总结

vivo手机上的系统级消息推送平台的架构设计实践

(本文已同步发布于:http://www.52im.net/thread-4416-1-1.html

揭秘vivo百亿级厂商消息推送平台的高可用技术实践的更多相关文章

  1. Worktile中百万级实时消息推送服务的实现

    Worktile中百万级实时消息推送服务的实现 出自:http://blog.jobbole.com/81125/

  2. Android 生态消息推送平台介绍

    一.手机厂商平台 华为消息推送服务 华为推送(Push)是为开发者提供的消息推送平台,建立了从云端到手机端的消息推送通道,使应用可以将最新信息及时通知用户,从而构筑良好的用户关系,提升用户的感知和活跃 ...

  3. Redis 在 vivo 推送平台的应用与优化实践

    一.推送平台特点 vivo推送平台是vivo公司向开发者提供的消息推送服务,通过在云端与客户端之间建立一条稳定.可靠的长连接,为开发者提供向客户端应用实时推送消息的服务,支持百亿级的通知/消息推送,秒 ...

  4. 结合实际需求,在webapi内利用WebSocket建立单向的消息推送平台,让A页面和服务端建立WebSocket连接,让其他页面可以及时给A页面推送消息

    1.需求示意图 2.需求描述 原本是为了给做unity3d客户端开发的同事提供不定时的消息推送,比如商城购买道具后服务端将道具信息推送给客户端. 本篇文章简化理解,用“相关部门开展活动,向全市人民征集 ...

  5. fuel 6.1自动推送3控高可用centos 6.5 juno环境排错(一)

    查看fuel日志: # less /var/log/docker-logs/remote/node-1.domain.tld/puppet-apply.log 2015-12-25T17:26:22. ...

  6. fuel 6.1自动推送3控高可用centos 6.5 juno环境排错(二)

    https://docs.mirantis.com/openstack/fuel/fuel-6.1/ 由于在测试高可用时,我是用esxi虚拟机测试,测试过程中遇到了网络问题:虚拟机间网络不通,故从网络 ...

  7. Android P正式版即将到来:后台应用保活、消息推送的真正噩梦

    1.前言 对于广大Android开发者来说,Android O(即Android 8.0)还没玩热,Andriod P(即Andriod 9.0)又要来了.   下图上谷歌官方公布的Android P ...

  8. 基于APNs最新HTTP/2接口实现iOS的高性能消息推送(服务端篇)

    1.前言 本文要分享的消息推送指的是当iOS端APP被关闭或者处于后台时,还能收到消息/信息/指令的能力. 这种在APP处于后台或关闭情况下的消息推送能力,通常在以下场景下非常有用: 1)IM即时通讯 ...

  9. 了解iOS消息推送一文就够:史上最全iOS Push技术详解

    本文作者:陈裕发, 腾讯系统测试工程师,由腾讯WeTest整理发表. 1.引言 开发iOS系统中的Push推送,通常有以下3种情况: 1)在线Push:比如QQ.微信等IM界面处于前台时,聊天消息和指 ...

  10. 58同城高性能移动Push推送平台架构演进之路

    本文详细讲述58同城高性能移动Push推送平台架构演进的三个阶段,并介绍了什么是移动Push推送,为什么需要,原理和方案对比:移动Push推送第一阶段(单平台)架构如何设计:移动Push推送典型性能问 ...

随机推荐

  1. Nuxt.js 应用中的 app:templates 事件钩子详解

    title: Nuxt.js 应用中的 app:templates 事件钩子详解 date: 2024/10/18 updated: 2024/10/18 author: cmdragon excer ...

  2. 马斯克对于CEO职能,发挥人才天赋,激励人才的想法

    Time Interview with Elon Musk, 29 September 2011. Content 1 Have people do be focused on doing usefu ...

  3. MISC 高手进阶区 1-5

    1.reverseME 题目描述 无 附件 一个 .jpg 的图片 是一个flag字符串的图片镜像. reverse V-T If you reverse the order of a set of ...

  4. (系列九)使用Vue3+Element Plus创建前端框架(附源码)

    说明 该文章是属于OverallAuth2.0系列文章,每周更新一篇该系列文章(从0到1完成系统开发). 该系统文章,我会尽量说的非常详细,做到不管新手.老手都能看懂. 说明:OverallAuth2 ...

  5. 使用 FastGPT 工作流搭建 GitHub Issues 自动总结机器人

    如今任何项目开发节奏都很快,及时掌握项目动态是很重要滴,GitHub Issues 一般都是开发者和用户反馈问题的主要渠道. 然而,随着 Issue 数量的增加,及时跟进每一个问题会变得越来越困难. ...

  6. SQL Server 安装图解

    此安装步骤适用于首次安装 一.SQL Server 安装 1.双击SQL Server 光盘映像文件,会出现如图所示界面 选择如下图所示的选项 2.输入产品密钥(这里演示密钥进行) 3.配置更新项,检 ...

  7. Min-25 筛小记

    Min-25 筛 参考 \(\text{OI-Wiki}\) 和 2018 集训队论文 朱震霆<一些特殊的数论函数求和问题>. \(\text{Min-25}\) 的本质是埃式筛和数论分块 ...

  8. 强化学习:塑造奖励(Shaping reward)

    "塑造奖励"(Shaping reward)是一个主要用于行为心理学和强化学习领域的技术.它通过对目标行为或结果的逐步接近进行强化,逐渐通过奖励越来越接近目标的行为来"塑 ...

  9. 服务器漏洞修复:TLS 1.0 已启用、HSTS、CSP

    1.TLS 1.0 已启用 描述: 此 Web 服务器支持通过 TLS 1.0 加密.TLS 1.0 不被认为是"强密码术".根据 PCI 数据安全标准 3.2(.1) 的定义和要 ...

  10. vue2-基础核心

    vue简介 vue中文官网 动态构建用户界面的渐进式 JavaScript 框架 vue的特点: 遵循MVVM模式 采用组件化模式,提高代码复用率,让代码更好维护 声明式编码,无需直接操作DOM,提高 ...