下面是总结自他人博客资料。以及本人自己的学习经验。



【Baby_Step,Gaint_Step定义】

高次同余方程。

BL == N (mod
P)

求解最小的L。因为数据范围非常大,暴力不行

这里用到baby_step,giant_step算法。意为先小步。后大步。

令L=i*m+j  (m=ceil(sqrt(p-1))),

那么原式化为 B^(i*m)*B^j==N(MOD P)————》B^j===N*B^(-i*m)(MOD P)

我们先预处理B^0,B^1,B^2……B^(m-1),存入HASH表。,这一步就是baby-step,每次移动1

然后求出B^-m,枚举i,假设存在B^(-i*m)存在于HASH表中,说明存在解L=i*m+j    ,这一步为giant_step,每次移动m

至于B^(-m)的求法。能够先求出B的逆元,也就是B^-1。

注意以上解法是最主要的,仅仅能对于gcd(B,P)==1

【解体思路】

我们能够做一个等价

x = i * m + j  ( 0 <= i < m, 0 <=j < m) m = Ceil ( sqrt( C) )

而这么分解的目的无非是为了转化为:

(A^i)^m * A^j = B ( mod C)



之后做少许暴力的工作就能够解决这个问题:

(1) for i = 0 -> m, 插入Hash (i, A^i mod C)

(2) 枚举 i ,对于每个枚举到的i,令  AA = (A^m)^i mod C

我们有

AA * A^j = B (mod C)

显然AA,B,C均已知,而因为C为素数,那么(AA,C)无条件为1

于是对于这个模方程解的个数唯一(能够利用扩展欧几里得或 欧拉定理来求解)

那么对于得到的唯一解X,在Hash表中寻找,假设找到。则返回 i * m + j

注意:因为i从小到大的枚举,而Hash表中存在的j必定是对于某个剩余系内的元素X 是最小的(就是指标)

所以显然此时就能够得到最小解




假设须要得到 x > 0的解,那么仅仅须要在上面的步骤中推断 当 i * m + j > 0 的时候才返回



到眼下为止,以上的算法都不存在争议,大家实现的代码均相差不大。可见当C为素数的时候,此类离散对数的问题能够变得十分easy实现。

【模板】

poj 2417

/*    

      NYIST_ZSJ
【普通版】Baby_Step,Gaint_Step
形式:A^x = B(mod C)
使用条件:
1、在数据范围非常大,无法暴力的情况下 2、C必然为素数
返回结果:
假设有解。则一定返回的最小解。
*/ //高速幂求a^b //a^b%n
LL pow_mod(LL a,LL b,LL n){
LL res = 1;
while(b){
if(b&1)
res = (res*a)%n;
a = (a*a)%n;
b = b >> 1;
}
return res;
} //求解模方程a^x = b(mod n),n为素数 ,无解返回-1
//费马小定理a^(n-1) = 1(mod n),n为素数.a^0 = 1,所以循环节小于等于n,即假设存在解。则最小解x <= n //a^x = b(mod n)
LL BSGS(LL a,LL b,LL n){
LL m,v,e = 1;
m = ceil(sqrt(n+0.5)); //x = i*m + j
//v = inv(pow_mod(a,m,n),n) //a^m*v = 1(mod n)
v = pow_mod(a,n-m-1,n); //v = a^-m
map<LL,LL> x;
x[1] = m;
for(int i = 1;i < m;++i){ //先一步(Baby_Step),建立哈希表。保存x^0,x^1,.....x^m-1
e = (e*a)%n;
if(!x[e])x[e] = i;
}
for(int i = 0;i < m;++i){ //在每次m次方加(Gaint_Step),遍历全部1<=x<=n
if(x[b]){
LL num = x[b];
x.clear(); //清空
return i*m + (num == m? 0:num);
}
//推断a^j =? b*a^(-m*i)%n,是否存在于哈希表中。假设存在着说明a^(i*m+j) = b(mod c)成立
b = (b*v)%n; //b = b/(a^m)
}
return -1; //无解
}

【总结】

上面算法总的时间复杂度接近于O(sqrt(C)*log(C)) (C是模)

主要參考资料:冷月之殇【模板】、ACM_cxlove【定义】、AekdyCoin【思路】



Baby_Step,Gaint_Step(分析具体解释+模板)的更多相关文章

  1. ElasticSearch评分分析 explian 解释和一些查询理解

    ElasticSearch评分分析 explian 解释和一些查询理解 按照es-ik分析器安装了ik分词器.创建索引:PUT /index_ik_test.索引包含2个字段:content和nick ...

  2. DB2 锁问题分析与解释

    DB2 锁问题分析与解释 DB2 应用中常常会遇到锁超时与死锁现象,那么这样的现象产生的原因是什么呢.本文以试验的形式模拟锁等待.锁超时.死锁现象.并给出这些现象的根本原因. 试验环境: DB2 v9 ...

  3. pbft流程深层分析和解释(转)

    <1>pbft五阶段请求解释 Request  pre-prepare   prepare   commit  执行并reply (1)pre-prepare阶段: 主节点收到客户端请求, ...

  4. tcpdump抓包分析具体解释

    說實在的,對於 tcpdump 這個軟體來說,你甚至能够說這個軟體其實就是個駭客軟體, 因為他不但能够分析封包的流向,連封包的內容也能够進行『監聽』, 假设你使用的傳輸資料是明碼的話,不得了,在 ro ...

  5. LoadRunner性能分析指标解释

    Transactions(用户事务分析) 用户事务分析是站在用户角度进行的基础性能分析. 1.Transation Sunmmary(事务综述) 对事务进行综合分析是性能分析的第一步,通过分析测试时间 ...

  6. BASE64编码乱码问题的浅层分析与解释

    本文由作者朱臻授权网易云社区发布. 1问题案例 曾在开发过程中,我们遇到了BASE64编码乱码的问题,该问题的场景如下: 当web前端,将带有中文字符的字符串base64编码后,传到后端.当后端将数据 ...

  7. C++标准库分析总结(二)——<模板,分配器,List>

    本节主要总结模板及其类模板分类以及STL里面的分配器.容器内部结构以及容器之间的关系和分类,还介绍了容器中List的结构分布 1.源代码版本介绍 1.1 VC的编译器源码目录: 2.类模板 2.1 类 ...

  8. LibOpenCM3(二) 项目模板 Makefile分析

    目录 LibOpenCM3(一) Linux下命令行开发环境配置 LibOpenCM3(二) 项目模板 Makefile分析 LibOpenCM3 项目模板 项目模板地址: https://githu ...

  9. 【并查集模板】并查集模板 luogu-3367

    题目描述 简单的并查集模板 输入描述 第一行包含两个整数N.M,表示共有N个元素和M个操作. 接下来M行,每行包含三个整数Zi.Xi.Yi 当Zi=1时,将Xi与Yi所在的集合合并 当Zi=2时,输出 ...

随机推荐

  1. java.lang.NoClassDefFoundError: org/apache/xmlbeans/XmlException

    http://blog.csdn.net/you23hai45/article/details/70197502

  2. gwt学习资料

    学习资料: 2 3

  3. 【刷题笔记】LeetCode 222. Count Complete Tree Nodes

    题意 给一棵 complete binary tree,数数看一共有多少个结点.做题链接 直观做法:递归 var countNodes = function(root) { if(root===nul ...

  4. 算法入门经典第七章 例题7-2-1 生成1-n的排列

    输入正数n,按字典序从小到大的顺序输出n个数的所有排列.两个序列的字典序大小关系等价于从头开始第一个不相同位置处的大小关系. 递归的边界应该很好理解吧,当集合s[]中没有一个元素的时候,按照上面的伪码 ...

  5. linux中openssl生成证书和自签证书

    1.首先要生成服务器端的私钥(key文件): 命令: openssl genrsa -des3 -out server.key 1024 运行时会提示输入密码,此密码用于加密key文件(参数des3便 ...

  6. TimSort学习资料

    深入理解 timsort 算法(1):自适应归并排序 如何找出Timsort算法和玉兔月球车中的Bug? Java TimSort算法 源码 笔记 Timsort https://en.wikiped ...

  7. 格式化日期字符串 FormatSettings使用

    如果 你想要得到 YYYY-MM/DD 这样的字符串 你肯定说这太简单了  直接 ShowMessage(FormatDateTime('YYYY-MM/DD',now)); 运行结果 YYYY-MM ...

  8. SVG实现波浪效果

    SVG实现波浪效果 svg path:C 贝塞尔曲线绘制波浪形状   A 绘制圆弧形 svg animate:制作波浪动画,为了波浪动画效果自然,设置values关键点  attributeName: ...

  9. css+html应用实例1:滑动门技术的简单实现

    关于滑动门,现在的页面中好多地方都会用到滑动门,一般用作于导航背景,它的官方解释如下: 滑动门:根据文本自适应大小,根据背景的层叠性制作,并允许他们在彼此之上进行滑动,以创造出一些特殊的效果. 为什么 ...

  10. 话说普通的TPlink ip地址是192.168.1.2 在LAN里有台电脑共享打印机 ip 是192.168.0.2 计算机名为j02 然后我把这台电脑加到DMZ里,让根路由器同一网段的可以访问 但添加打印机的时候 提示 计算机名重复 后来在需要添加打印机电脑的hosts文件里加了 192.168.1.2 j02 式了一样不行 话说,这个打印机该怎么添加

    开启端口映射,从外网访问内网的文件共享: 已经在路由器里开了远端WEB管理设了端口,另外端口映射局域网里的一台电脑,比如WEB端口设的是8080,映射192.168.1.100到4877端口,现在我想 ...