SGU 142

题意:给你一个长度为n的串(由a,b组成),让你找出一个串不是n的子串,长度最下

收获:思维题,思路在代码里

#include<bits/stdc++.h>
#define de(x) cout<<#x<<"="<<x<<endl;
#define dd(x) cout<<#x<<"="<<x<<" ";
#define rep(i,a,b) for(int i=a;i<(b);++i)
#define repd(i,a,b) for(int i=a;i>=(b);--i)
#define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
#define ll long long
#define mt(a,b) memset(a,b,sizeof(a))
#define fi first
#define se second
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define pdd pair<double,double>
#define pdi pair<double,int>
#define mp(u,v) make_pair(u,v)
#define sz(a) (int)a.size()
#define ull unsigned long long
#define ll long long
#define pb push_back
#define PI acos(-1.0)
#define qc std::ios::sync_with_stdio(false)
#define db double
#define all(a) a.begin(),a.end()
const int mod = 1e9+;
const int maxn = 5e5+;
const double eps = 1e-;
using namespace std;
bool eq(const db &a, const db &b) { return fabs(a - b) < eps; }
bool ls(const db &a, const db &b) { return a + eps < b; }
bool le(const db &a, const db &b) { return eq(a, b) || ls(a, b); }
ll gcd(ll a,ll b) { return a==?b:gcd(b%a,a); };
ll lcm(ll a,ll b) { return a/gcd(a,b)*b; }
ll kpow(ll a,ll b) {ll res=;a%=mod; if(b<) return ; for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
ll read(){
ll x=,f=;char ch=getchar();
while (ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//inv[1]=1;
//for(int i=2;i<=n;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
//这么考虑,一个串(长度为n)拥有长度为k的子串种类最多有n-k+1种,那么题目里的n最多为5e5,
//那么2的19次方就已经超过了5e5了,那么我们找的子串长度最多为19
//然后你在预处理一下就行了
char s[maxn];
bool f[(<<)+][] = {};
int main(){
int n;
scanf("%d%s",&n,s);
rep(i,,n){
int tmp = ;
// de(i)
rep(j,,){
if(i + j > n) break;
tmp = tmp * + s[i+j-] - 'a';
// dd(j)de(tmp)
f[tmp][j] = true;
}
// cout<<endl;
}
rep(ans,,){
// de(ans)
rep(i,,<<ans){
// d0e(i)
if(!f[i][ans]){
printf("%d\n",ans);
repd(k,ans-,) {
if(i&(<<k)) printf("b");
else printf("a");
}
return ;
}
}
}
return ;
}

今日SGU 5.19的更多相关文章

  1. 今日SGU 6.6

    sgu 177 题意:给你一个一开始全是白色的正方形,边长为n,然后问你经过几次染色之后,最后的矩形里面 还剩多少个白色的块 收获:矩形切割,我们可以这么做,离散处理,对于每次染黑的操作,看看后面有没 ...

  2. 今日SGU 6.5

    sgu 160 题意:给你n个数字 数字范围 1 到 m 问你从中取出任意数量的数字使得这些数字的积取模m最大 收获:dp,记录dp的路径 #include<bits/stdc++.h> ...

  3. 今日SGU 5.30

    SGU 190 题意:给你个n*n的矩形,然后上面有几个点不能放东西,然后问你能不能用1*2的矩形,把能放 东西的地方放满 收获:一开始想的是,dfs,然后感觉这样的话,代码很长,而且很容易超时, 看 ...

  4. 今日SGU 5.29

    sgu 299 题意:给你n个线段,然后问你能不能选出其中三个组成一个三角形,数字很大 收获:另一个大整数模板 那么考虑下为什么如果连续三个不可以的话,一定是不存在呢? 连续上个不合法的话,一定是 a ...

  5. 今日SGU 5.28

    SGU 121 题意:给你一张图,问你每个顶点必须有黑白两条边(如果它的边数>=2),问你怎么染色,不行就输出no 收获:你会发现不行的情况只有一个单纯的奇数环的时候,反之我们交替染色即可 #i ...

  6. 今日SGU 5.27

    SGU 122 题意:给你n个人,每个人有大于 N / 2(向上取整)的朋友,问你1这个人有一个书,每个人都想看,只能从朋友之间传递,然后最后回到了1这个人,问你 是否有解,然后有解输出路径 收获:哈 ...

  7. 今日SGU 5.26

    #include<bits/stdc++.h> #define de(x) cout<<#x<<"="<<x<<endl ...

  8. 今日SGU 5.25

    SGU 194 题意:无源汇有上下界的最大流 收获:https://wenku.baidu.com/view/0f3b691c59eef8c75fbfb35c.html #include<bit ...

  9. 今日SGU 5.23

    SGU 223 题意:给你n*n的矩形,放k个国王,每个国王不能放在别的国王的8连边上,问你有多少种方法 收获:状态DP,因为每行的放置只会影响下一行,然我们就枚举每行的状态和对应的下一行的状态,当两 ...

随机推荐

  1. leetcode笔记:Merge Sorted Array

    一.题目描写叙述 二.解题技巧 这道题不存在复杂的分析过程和边界条件.假设单纯得考虑从小到大地将两个数组进行合并的话.每次在num1中插入一个数的话,须要将后面的元素都向后移动一位.这样.整个处理过程 ...

  2. 【推荐系统实战】:C++实现基于用户的协同过滤(UserCollaborativeFilter)

    好早的时候就打算写这篇文章,可是还是參加阿里大数据竞赛的第一季三月份的时候实验就完毕了.硬生生是拖到了十一假期.自己也是醉了... 找工作不是非常顺利,希望写点东西回想一下知识.然后再攒点人品吧,仅仅 ...

  3. STL_算法_查找算法(binary_search、includes)

    C++ Primer 学习中.. . 简单记录下我的学习过程 (代码为主) 全部容器适用(O(log(n)))     已序区间查找算法 binary_search             //二分查 ...

  4. Android体验高扩展艺术般的适配器

    前言 本篇文章带大家体验一下一种具有扩展性的适配器写法. 这个适配器主要用于Item有多种的情况下.当然仅仅有一种类型也是适用的 实现 毫无疑问我们要继承BaseAdapter,重写getCount, ...

  5. MetaSploit攻击实例讲解------终端下PostgreSQL数据库的使用(包括kali linux 2016.2(rolling) 和 BT5)

    不多说,直接上干货! 配置msf连接postgresql数据库 我这里是使用kali linux 2016.2(rolling)   用过的博友们都知道,已经预安装好了PostgreSQL. 1. p ...

  6. Kali linux 2016.2(Rolling)里Metasploit的OpenVAS

    不多说,直接上干货! 关于OpenAVS的概念,我这里不多赘述. 前提得,大家要先安装好OpenVAS!!! 我们都知道,BT5中已经预先安装好了OpenVAS网络漏洞扫描工具,我们只需进行一些配置即 ...

  7. ASP.NET Identity 角色管理(Roles)

    当我们使用ASP.NET 4.5创建模板项目时,会发现模板只提供了ApplicationUserManager用于用户的登录注册.修改.设置等,而没有提供与用户角色相关的代码,对此就需要我们自己手动的 ...

  8. 使用Java操作Redis(一)

    Redis是一款基于key-value的数据库服务器,安装完成后我们可以通过redis-cli使用Redis提供的命令完成各种操作.redis-cli实际上就是一款客户端,和redis-server建 ...

  9. ListView和GridView的setOnScrollListener的简介

    ---恢复内容开始--- 设置ListView和GridView的滑动监听 circle_lv.setOnScrollListener(new AbsListView.OnScrollListener ...

  10. php实现自动加载类

    PHP 实现自动加载类: