Islands and Bridges

Time Limit: 4000ms
Memory Limit: 65536KB

This problem will be judged on HDU. Original ID: 1668
64-bit integer IO format: %I64d      Java class name: Main

Given a map of islands and bridges that connect these islands, a Hamilton path, as we all know, is a path along the bridges such that it visits each island exactly once. On our map, there is also a positive integer value associated with each island. We call a Hamilton path the best triangular Hamilton path if it maximizes the value described below.

Suppose there are n islands. The value of a Hamilton path C1C2...Cn is calculated as the sum of three parts. Let Vi be the value for the island Ci. As the first part, we sum over all the Vi values for each island in the path. For the second part, for each edge CiCi+1 in the path, we add the product Vi*Vi+1. And for the third part, whenever three consecutive islands CiCi+1Ci+2 in the path forms a triangle in the map, i.e. there is a bridge between Ci and Ci+2, we add the product Vi*Vi+1*Vi+2.

Most likely but not necessarily, the best triangular Hamilton path you are going to find contains many triangles. It is quite possible that there might be more than one best triangular Hamilton paths; your second task is to find the number of such paths.

Input
The input file starts with a number q (q<=20) on the first line, which is the number of test cases. Each test case starts with a line with two integers n and m, which are the number of islands and the number of bridges in the map, respectively. The next line contains n positive integers, the i-th number being the Vi value of island i. Each value is no more than 100. The following m lines are in the form x y, which indicates there is a (two way) bridge between island x and island y. Islands are numbered from 1 to n. You may assume there will be no more than 13 islands.

 

Input

The input file starts with a number q (q<=20) on the first line, which is the number of test cases. Each test case starts with a line with two integers n and m, which are the number of islands and the number of bridges in the map, respectively. The next line contains n positive integers, the i-th number being the Vi value of island i. Each value is no more than 100. The following m lines are in the form x y, which indicates there is a (two way) bridge between island x and island y. Islands are numbered from 1 to n. You may assume there will be no more than 13 islands.

 

Output

For each test case, output a line with two numbers, separated by a space. The first number is the maximum value of a best triangular Hamilton path; the second number should be the number of different best triangular Hamilton paths. If the test case does not contain a Hamilton path, the output must be `0 0'.

Note: A path may be written down in the reversed order. We still think it is the same path.

 

Sample Input

2
3 3
2 2 2
1 2
2 3
3 1
4 6
1 2 3 4
1 2
1 3
1 4
2 3
2 4
3 4

Sample Output

22 3
69 1

Source

 
解题:一道状压dp题啊,dp[i][j][k]表示当前状态i且当前在k,上一个状态在j
 
 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = ;
bool arc[maxn][maxn];
int dp[<<maxn][maxn][maxn],val[],n,m;
LL cnt[<<maxn][maxn][maxn];
int main() {
int cs;
scanf("%d",&cs);
while(cs--) {
scanf("%d %d",&n,&m);
memset(arc,false,sizeof arc);
for(int i = ; i < n; ++i) scanf("%d",val+i);
for(int u,v, i = ; i < m; ++i) {
scanf("%d %d",&u,&v);
arc[u-][v-] = arc[v-][u-] = true;
}
if(n == ) {
printf("%d 1\n",val[]);
continue;
}
memset(dp,-,sizeof dp);
memset(cnt,,sizeof cnt);
for(int i = ; i < n; ++i)
for(int j = ; j < n; ++j)
if(i != j && arc[i][j]) {
dp[(<<i)|(<<j)][i][j] = val[i] + val[j] + val[i]*val[j];
cnt[(<<i)|(<<j)][i][j] = ;
}
for(int i = ; i < (<<n); ++i) {
for(int j = ; j < n; ++j) {
if(i&(<<j)) {
for(int k = ; k < n; ++k) {
if(j != k && (i&(<<k)) && arc[j][k] && dp[i][j][k] != -) {
for(int t = ; t < n; ++t) {
if((i&(<<t)) == && arc[k][t] && j != t && k != t) {
int tmp = dp[i][j][k] + val[t] + val[k]*val[t];
if(arc[j][t]) tmp += val[j]*val[k]*val[t];
if(dp[i|(<<t)][k][t] == tmp)
cnt[i|(<<t)][k][t] += cnt[i][j][k];
else if(dp[i|(<<t)][k][t] < tmp) {
dp[i|(<<t)][k][t] = tmp;
cnt[i|(<<t)][k][t] = cnt[i][j][k];
}
}
}
}
}
}
}
}
int ret = ;
LL ret2 = ;
for(int i = ; i < n; ++i)
for(int j = ; j < n; ++j)
if(i != j && arc[i][j]) {
if(ret < dp[(<<n)-][i][j]) {
ret = dp[(<<n)-][i][j];
ret2 = cnt[(<<n)-][i][j];
} else if(ret == dp[(<<n)-][i][j])
ret2 += cnt[(<<n)-][i][j];
}
printf("%d %I64d\n",ret,ret2>>);
}
return ;
}

HDU 1668 Islands and Bridges的更多相关文章

  1. POJ2288 Islands and Bridges

    Description Given a map of islands and bridges that connect these islands, a Hamilton path, as we al ...

  2. 【状压dp】Islands and Bridges

    Islands and Bridges Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 11034   Accepted: 2 ...

  3. Hdu 4738 Caocao's Bridges (连通图+桥)

    题目链接: Hdu 4738 Caocao's Bridges 题目描述: 有n个岛屿,m个桥,问是否可以去掉一个花费最小的桥,使得岛屿边的不连通? 解题思路: 去掉一个边使得岛屿不连通,那么去掉的这 ...

  4. [poj2288] Islands and Bridges (状压dp)

    Description Given a map of islands and bridges that connect these islands, a Hamilton path, as we al ...

  5. HDU 4738 Caocao's Bridges(Tarjan求桥+重边判断)

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. HDU 4738——Caocao's Bridges——————【求割边/桥的最小权值】

     Caocao's Bridges Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. hdu 4738 Caocao's Bridges 图--桥的判断模板

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. HDU 4738 Caocao's Bridges

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. HDU 4738 Caocao's Bridges (2013杭州网络赛1001题,连通图,求桥)

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. 6.5.2 C# 中的函数组合

    6.5.2 C# 中的函数组合 C# 中的函数组合是可能的.但使用非常有限,这是部分是由于在 C# 中散应用不能非常easy使用.但更重要的是,由于大多数操作是用成员来写的.而不是函数.但我们至少能够 ...

  2. Mysql写出高质量的sql语句的几点建议

    CleverCode在实际的工作也写过一些低效率的sql语句.这些语句会给数据库带来非常大的压力.最基本的表现就是sql语句执行慢,后来逐渐的去优化和尝试. 总结了一些高质量的sql语句的写法.这里C ...

  3. Consolidate data by using multiple page fields

    Consolidate data by using multiple page fields https://support.office.com/en-us/article/Consolidate- ...

  4. python-logging写日志编码问题

    python-logging写日志编码问题 标签(空格分隔): python 修改logging.FileHandler() 指定编码格式为:utf8 重新运行

  5. Spring 4 CustomEditorConfigurer Example--转

    原文地址:http://howtodoinjava.com/spring/spring-core/registering-built-in-property-editors-in-spring-4-c ...

  6. Android RecyclerView实现横向滚动

    我相信很久以前,大家在谈横向图片轮播是时候,优先会选择具有HorizontalScrollView效果和ViewPager来做,不过自从Google大会之后,系统为我们提供了另一个控件Recycler ...

  7. Angular2/Ionic2集成Promact/md2.md

    最近想找一套比较完整的基于Material风格的Angular2的控件库,有两个选择一个是Angular官方的Material2,但是这套库的DatePicker控件目前只能支持年月日,不支持时分秒, ...

  8. PullToRefreshListView的刷新和加载的控制

         pullToRefresh.setMode(Mode.BOTH);   Mode.BOTH:同时支持上拉下拉 Mode.PULL_FROM_START:只支持下拉Pulling Down M ...

  9. NodeJS学习笔记 (11)网络UDP-dgram(ok)

    模块概览 dgram模块是对UDP socket的一层封装,相对net模块简单很多,下面看例子. UPD客户端 vs UDP服务端 首先,启动UDP server,监听来自端口33333的请求. se ...

  10. JAVA版本区块链钱包核心代码

    Block.java package com.ppblock.blockchain.core; import java.io.Serializable; /** * 区块 * @author yang ...