[luogu P3813] [FJOI2017] 矩阵填数 解题报告 (容斥原理)
题目链接:
https://www.luogu.org/problemnew/show/P3813
题目:
给定一个 h*w的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w。
在这个矩阵中你需要在每个格子中填入 1..m中的某个数。
给这个矩阵填数的时候有一些限制,给定 n 个该矩阵的子矩阵,以及该子矩阵的最大值 v,要求你所填的方案满足该子矩阵的最大值为 v。
现在,你的任务是求出有多少种填数的方案满足 n 个限制。
两种方案是不一样的当且仅当两个方案至少存在一个格子上有不同的数。由于答案可能很大,你只需要输出答案 mod 1,000,000,007
题解:
对于每个格,能填的最⼤值是 $min(m,v_i)$,$v_i$ 为覆盖到该点的所有⼩矩阵的预设答案,这就是总⽅案数。
考虑容斥原理,奇减偶加。总方案数-一个不合法的方案数+两个不合法的方案数...
离散化后 $2^n$ 枚举⼦集,然后对于选中的矩阵为 $min(v_i−1)$,即强制让选中的⼦矩阵的最⼤值⼩于预设的答案(总方案里一个矩阵里所有的元素都小于等于这个矩阵的v)
这⼀步由于离散化的原因,可以直接暴⼒ for 遍历所有在⼦ 矩阵内的位置。 复杂度:$O(2^n n^3)$
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll; const int N=;
const ll mo=1e9+;
int h,w,m,n,vx,vy,vp;
int ma[N][],dx[N],dy[N],mv[N],a[N][N],mp[N][N];
ll vv[N],tong[N];
inline int read(){
char ch=getchar();int s=,f=;
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
ll qpow(ll a,ll b){
ll re=;
for (;b;b>>=,a=a*a%mo) if (b&) re=re*a%mo;
return re;
}
int main()
{
int T=read();
while (T--)
{
h=read();w=read();m=read();n=read();
vx=vy=vp=;
dx[++vx]=;dx[++vx]=h+;
dy[++vy]=;dy[++vy]=w+;
vv[++vp]=m;
for (int i=;i<=n;i++)
{
ma[i][]=read();ma[i][]=read();ma[i][]=read();ma[i][]=read();mv[i]=read();
dx[++vx]=ma[i][];dx[++vx]=ma[i][]+;
dy[++vy]=ma[i][];dy[++vy]=ma[i][]+;
vv[++vp]=mv[i];vv[++vp]=mv[i]-;
}
sort(dx+,dx++vx);
sort(dy+,dy++vy);
sort(vv+,vv++vp);
vx=unique(dx+,dx++vx)-dx-;
vy=unique(dy+,dy++vy)-dy-;
vp=unique(vv+,vv++vp)-vv-;
for (int i=;i<vx;i++)//<号不是<=号,因为最后一个是无效的位置
for (int j=;j<vy;j++) a[i][j]=(dx[i+]-dx[i])*(dy[j+]-dy[j]);
for (int i=;i<=n;i++)
{
ma[i][]=lower_bound(dx+,dx++vx,ma[i][])-dx;
ma[i][]=lower_bound(dx+,dx++vx,ma[i][]+)-dx;
ma[i][]=lower_bound(dy+,dy++vy,ma[i][])-dy;
ma[i][]=lower_bound(dy+,dy++vy,ma[i][]+)-dy;
mv[i]=lower_bound(vv+,vv++vp,mv[i])-vv;
}
ll ans=;
for (int S=;S<(<<n);S++)
{
for (int i=;i<vx;i++)
for (int j=;j<vy;j++) mp[i][j]=vp;
ll s=;
for (int i=;i<n;i++)
{
int v=mv[i+];
if (S>>i&) v--,s=-s;
for (int j=ma[i+][];j<ma[i+][];j++)
for (int k=ma[i+][];k<ma[i+][];k++) mp[j][k]=min(mp[j][k],v);
}
for (int i=;i<=vp;i++) tong[i]=;
for (int i=;i<vx;i++)
for (int j=;j<vy;j++) tong[mp[i][j]]+=a[i][j];
for (int i=;i<=vp;i++) s=s*qpow(vv[i],tong[i])%mo;
ans=(ans+s)%mo;
}
ans=(ans%mo+mo)%mo;
printf("%lld\n",ans);
}
return ;
}
[luogu P3813] [FJOI2017] 矩阵填数 解题报告 (容斥原理)的更多相关文章
- P3813 [FJOI2017]矩阵填数(组合数学)
P3813 [FJOI2017]矩阵填数 shadowice1984说:看到计数想容斥........ 这题中,我们把图分成若干块,每块的最大值域不同 蓝后根据乘法原理把每块的方案数(互不相干)相乘. ...
- P3813 [FJOI2017]矩阵填数
传送门 矩阵很大,但是发现 $n$ 很小,从这边考虑,对于一个一堆小矩阵放在一起的情况 考虑把每一块单独考虑然后方案再乘起来 但是这些奇怪的东西很不好考虑 所以暴力一点,直接拆成一个个小块 但是这样我 ...
- [FJOI2017]矩阵填数——容斥
参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...
- [BZOJ5010][FJOI2017]矩阵填数(状压DP)
5010: [Fjoi2017]矩阵填数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 90 Solved: 45[Submit][Status][ ...
- bzoj5010: [Fjoi2017]矩阵填数
Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...
- bzoj 5010: [Fjoi2017]矩阵填数
Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...
- BZOJ5010 FJOI2017矩阵填数(容斥原理)
如果只考虑某个子矩阵的话,其最大值为v的方案数显然是vsize-(v-1)size.问题在于处理子矩阵间的交叉情况. 如果两个交叉的子矩阵所要求的最大值不同,可以直接把交叉部分划给所要求的最大值较小的 ...
- 【BZOJ】5010: [Fjoi2017]矩阵填数
[算法]离散化+容斥原理 [题意]给定大矩阵,可以每格都可以任意填1~m,给定n个子矩阵,要求满足子矩阵内的最大值为vi,求方案数. n<=10,h,w<=1w. [题解] 此题重点之一在 ...
- [FJOI2017]矩阵填数
[Luogu3813] [LOJ2280] 写得很好的题解 \(1.\)离散化出每一块内部不互相影响的块 \(2.\)\(dp[i][j]\)为前 \(i\) 种重叠块其中有 \(j\) 这些状态的矩 ...
随机推荐
- Core篇——初探依赖注入
目录 1.DI&&IOC简单介绍 2.UML类图中六种关联关系 3..net core 中DI的使用 4..net core DI初始化源码初窥 DI&&IOC简单介绍 ...
- Core Java(五)
类和对象&方法 ——类的定义 现实世界的事物 属性:人的身高,体重等 行为:人可以学习,吃饭等 Java中用class描述事物也是如此 成员变量:就是事物的属性 成员方法:就是事物的行为 ...
- (转载) listview实现微信朋友圈嵌套
listview实现微信朋友圈嵌套 标签: androidlistview 2016-01-06 00:05 572人阅读 评论(0) 收藏 举报 分类: android(8) 版权声明:本文为博 ...
- R dataframe 去除行号
原先的行号是这样的:
- 博客移至 GitHub
新博客地址: github.com/FatliTalk/blog
- django前端到后端一次完整请求实例
一.创建项目:# django-admin startproject mysite# cd mysite# python manage.py startapp blog 目录结构: 一.html文件: ...
- 构造器参数过多时考虑使用构建器(Builder)
一.静态工厂和构造器的局限性 面对需要大量可选参数才能构建对象时,静态工厂和构造器并不能随着可选参数的增加而合理扩展. 假设创建一个类Person需要使用大量的可选参数,其中两个参数是必填的,剩下的都 ...
- day03 Python3的安装
目录 Python的安装 Python下载 Python3安装 环境变量 添加环境变量 在CMD中运行Python Python的安装 Python可在多个操作系统(Windows,Linux,Mac ...
- HDU 1005 Number Sequence(找规律)
链接:传送门 题意:略 思路:f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7 -> f(n) = (A * f(n-1)%7 + B * f(n-1)%7) ...
- UVA401-Palindromes(紫书例题3.3)
A regular palindrome is a string of numbers or letters that is the same forward as backward. For exa ...