题目链接:

https://www.luogu.org/problemnew/show/P3813

题目:

给定一个 h*w的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w。

在这个矩阵中你需要在每个格子中填入 1..m中的某个数。

给这个矩阵填数的时候有一些限制,给定 n 个该矩阵的子矩阵,以及该子矩阵的最大值 v,要求你所填的方案满足该子矩阵的最大值为 v。

现在,你的任务是求出有多少种填数的方案满足 n 个限制。

两种方案是不一样的当且仅当两个方案至少存在一个格子上有不同的数。由于答案可能很大,你只需要输出答案 mod 1,000,000,007

题解:

对于每个格,能填的最⼤值是 $min(m,v_i)$,$v_i$ 为覆盖到该点的所有⼩矩阵的预设答案,这就是总⽅案数。

考虑容斥原理,奇减偶加。总方案数-一个不合法的方案数+两个不合法的方案数...

离散化后 $2^n$ 枚举⼦集,然后对于选中的矩阵为 $min(v_i−1)$,即强制让选中的⼦矩阵的最⼤值⼩于预设的答案(总方案里一个矩阵里所有的元素都小于等于这个矩阵的v)

这⼀步由于离散化的原因,可以直接暴⼒ for 遍历所有在⼦ 矩阵内的位置。 复杂度:$O(2^n n^3)$

#include<algorithm>
#include<cstring>
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll; const int N=;
const ll mo=1e9+;
int h,w,m,n,vx,vy,vp;
int ma[N][],dx[N],dy[N],mv[N],a[N][N],mp[N][N];
ll vv[N],tong[N];
inline int read(){
char ch=getchar();int s=,f=;
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
ll qpow(ll a,ll b){
ll re=;
for (;b;b>>=,a=a*a%mo) if (b&) re=re*a%mo;
return re;
}
int main()
{
int T=read();
while (T--)
{
h=read();w=read();m=read();n=read();
vx=vy=vp=;
dx[++vx]=;dx[++vx]=h+;
dy[++vy]=;dy[++vy]=w+;
vv[++vp]=m;
for (int i=;i<=n;i++)
{
ma[i][]=read();ma[i][]=read();ma[i][]=read();ma[i][]=read();mv[i]=read();
dx[++vx]=ma[i][];dx[++vx]=ma[i][]+;
dy[++vy]=ma[i][];dy[++vy]=ma[i][]+;
vv[++vp]=mv[i];vv[++vp]=mv[i]-;
}
sort(dx+,dx++vx);
sort(dy+,dy++vy);
sort(vv+,vv++vp);
vx=unique(dx+,dx++vx)-dx-;
vy=unique(dy+,dy++vy)-dy-;
vp=unique(vv+,vv++vp)-vv-;
for (int i=;i<vx;i++)//<号不是<=号,因为最后一个是无效的位置
for (int j=;j<vy;j++) a[i][j]=(dx[i+]-dx[i])*(dy[j+]-dy[j]);
for (int i=;i<=n;i++)
{
ma[i][]=lower_bound(dx+,dx++vx,ma[i][])-dx;
ma[i][]=lower_bound(dx+,dx++vx,ma[i][]+)-dx;
ma[i][]=lower_bound(dy+,dy++vy,ma[i][])-dy;
ma[i][]=lower_bound(dy+,dy++vy,ma[i][]+)-dy;
mv[i]=lower_bound(vv+,vv++vp,mv[i])-vv;
}
ll ans=;
for (int S=;S<(<<n);S++)
{
for (int i=;i<vx;i++)
for (int j=;j<vy;j++) mp[i][j]=vp;
ll s=;
for (int i=;i<n;i++)
{
int v=mv[i+];
if (S>>i&) v--,s=-s;
for (int j=ma[i+][];j<ma[i+][];j++)
for (int k=ma[i+][];k<ma[i+][];k++) mp[j][k]=min(mp[j][k],v);
}
for (int i=;i<=vp;i++) tong[i]=;
for (int i=;i<vx;i++)
for (int j=;j<vy;j++) tong[mp[i][j]]+=a[i][j];
for (int i=;i<=vp;i++) s=s*qpow(vv[i],tong[i])%mo;
ans=(ans+s)%mo;
}
ans=(ans%mo+mo)%mo;
printf("%lld\n",ans);
}
return ;
}

[luogu P3813] [FJOI2017] 矩阵填数 解题报告 (容斥原理)的更多相关文章

  1. P3813 [FJOI2017]矩阵填数(组合数学)

    P3813 [FJOI2017]矩阵填数 shadowice1984说:看到计数想容斥........ 这题中,我们把图分成若干块,每块的最大值域不同 蓝后根据乘法原理把每块的方案数(互不相干)相乘. ...

  2. P3813 [FJOI2017]矩阵填数

    传送门 矩阵很大,但是发现 $n$ 很小,从这边考虑,对于一个一堆小矩阵放在一起的情况 考虑把每一块单独考虑然后方案再乘起来 但是这些奇怪的东西很不好考虑 所以暴力一点,直接拆成一个个小块 但是这样我 ...

  3. [FJOI2017]矩阵填数——容斥

    参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...

  4. [BZOJ5010][FJOI2017]矩阵填数(状压DP)

    5010: [Fjoi2017]矩阵填数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 45[Submit][Status][ ...

  5. bzoj5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  6. bzoj 5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  7. BZOJ5010 FJOI2017矩阵填数(容斥原理)

    如果只考虑某个子矩阵的话,其最大值为v的方案数显然是vsize-(v-1)size.问题在于处理子矩阵间的交叉情况. 如果两个交叉的子矩阵所要求的最大值不同,可以直接把交叉部分划给所要求的最大值较小的 ...

  8. 【BZOJ】5010: [Fjoi2017]矩阵填数

    [算法]离散化+容斥原理 [题意]给定大矩阵,可以每格都可以任意填1~m,给定n个子矩阵,要求满足子矩阵内的最大值为vi,求方案数. n<=10,h,w<=1w. [题解] 此题重点之一在 ...

  9. [FJOI2017]矩阵填数

    [Luogu3813] [LOJ2280] 写得很好的题解 \(1.\)离散化出每一块内部不互相影响的块 \(2.\)\(dp[i][j]\)为前 \(i\) 种重叠块其中有 \(j\) 这些状态的矩 ...

随机推荐

  1. 切换JDK版本quick

    最近遇到一个小问题,同时做两个项目,jdk版本一个是5,一个是6,我也去网上找了找方法,但是感觉不是特别好用,最后自己通过一些环境变量设置的技巧和一些批处理命令来使得这件事情只需要双击,输入一个数字回 ...

  2. Ztree自动触发第一个节点的点击事件

    1.代码 $(function () { var setting = { //check属性放在data属性之后,复选框不起作用 //check: { // enable: true //}, dat ...

  3. mysql安装出现 conflicts with mysql*的解决办法

    rpm -ivh Percona-Server-client-56-5.6.16-rel64.0.el6.x86_64.rpm --nodeps --force error: Failed depen ...

  4. Comparison of programming languages

    The following table compares general and technical information for a selection of commonly used prog ...

  5. 《图解HTTP》摘要

    网络基础TCP/IP 使用Cookie进行状态管理 HTTP首部 确保Web安全的HTTPS 1.网络基础TCP/IP 2.使用Cookie进行状态管理:HTTP是无状态协议. 3.HTTP首部 HT ...

  6. iproute2+tc notes

    iproute2+tc notes The iproute2+tc package allows access to the variety of neat new networking featur ...

  7. Day 07 数据类型的内置方法[列表,元组,字典,集合]

    数据类型的内置方法 一:列表类型[list] 1.用途:多个爱好,多个名字,多个装备等等 2.定义:[]内以逗号分隔多个元素,可以是任意类型的值 3.存在一个值/多个值:多个值 4.有序or无序:有序 ...

  8. easyUI datagrid表头的合并

    图列: js代码 function initConfigTable(param){ $("#mulConfigureTableBox").empty(); $("#mul ...

  9. sklearn学习4----预处理(1)标准化

    一.[标准化]scale: 1.导入模块  from sklearn.preprocessing import scaler 2.作用:直接将给定数据进行标准化 3.使用代码 X_scaled=sca ...

  10. vertical-align到底是个啥

    https://developer.mozilla.org/en-US/docs/Web/CSS/vertical-align http://phrogz.net/css/vertical-align ...