Description

Let us consider a special type of a binary search tree, called a cartesian tree. Recall that a binary search tree is a rooted ordered binary tree, such that for its every node x the following condition is satisfied: each node in its left subtree has the key
less then the key of x, and each node in its right subtree has the key greater then the key of x. 

That is, if we denote left subtree of the node x by L(x), its right subtree by R(x) and its key by kx then for each node x we have

  • if y ∈ L(x) then ky < kx
  • if z ∈ R(x) then kz > kx

The binary search tree is called cartesian if its every node x in addition to the main key kx also has an auxiliary key that we will denote by ax, and for these keys the heap condition is satisfied, that is

  • if y is the parent of x then ay < ax

Thus a cartesian tree is a binary rooted ordered tree, such that each of its nodes has a pair of two keys (k, a) and three conditions described are satisfied. 

Given a set of pairs, construct a cartesian tree out of them, or detect that it is not possible.

Input

The first line of the input file contains an integer number N -- the number of pairs you should build cartesian tree out of (1 <= N <= 50 000). The following N lines contain two numbers each -- given pairs (ki, ai). For each pair |ki|, |ai| <= 30 000. All main
keys and all auxiliary keys are different, i.e. ki != kj and ai != aj for each i != j.

Output

On the first line of the output file print YES if it is possible to build a cartesian tree out of given pairs or NO if it is not. If the answer is positive, on the following N lines output the tree. Let nodes be numbered from 1 to N corresponding to pairs they
contain as they are given in the input file. For each node output three numbers -- its parent, its left child and its right child. If the node has no parent or no corresponding child, output 0 instead. 

The input ensure these is only one possible tree.

Sample Input

7
5 4
2 2
3 9
0 5
1 3
6 6
4 11

Sample Output

YES
2 3 6
0 5 1
1 0 7
5 0 0
2 4 0
1 0 0
3 0 0

Source

Northeastern Europe 2002, Northern Subregion

思路:题目中说全部的key值都不一样,因此不会存在NO的情况。

直接建树再输出就可以。

#include <cstdio>
#include <algorithm>
using namespace std; struct S{
int id,key,val,parent,l,r;
}node[50005]; bool cmp(struct S a,struct S b)
{
return a.key<b.key;
} int stk[50005],top,p[50005],l[50005],r[50005]; void build(int n)//由于已经按key值升序排序了,所以后面增加的节点要么成为某个节点的右儿子。要么让根节点成为自己的左儿子
{
int i; top=0; stk[top]=1; for(i=2;i<=n;i++)
{
while(top>=0 && node[stk[top]].val>node[i].val) top--; if(top>-1)//假设找到一个不大于自己的节点。就成为该节点的右儿子,还要注意让该节点原来的右儿子变成自己的左儿子(key比其大而且小于其val)
{
node[i].parent=stk[top];
node[node[stk[top]].r].parent=i;
node[i].l=node[stk[top]].r;
node[stk[top]].r=i;
}
else//假设没找到不大于自己的节点。就变成新的根
{
node[stk[0]].parent=i;
node[i].l=stk[0];
} stk[++top]=i;
}
} int main()
{
int n,i; while(~scanf("%d",&n))
{
for(i=1;i<=n;i++)
{
scanf("%d%d",&node[i].key,&node[i].val); node[i].id=i; node[i].parent=node[i].l=node[i].r=0;//初始化
} sort(node+1,node+n+1,cmp); build(n); for(i=1;i<=n;i++)
{
p[node[i].id]=node[node[i].parent].id;
l[node[i].id]=node[node[i].l].id;
r[node[i].id]=node[node[i].r].id;
} printf("YES\n"); for(i=1;i<=n;i++) printf("%d %d %d\n",p[i],l[i],r[i]);
}
}

POJ-2201-Cartesian Tree(笛卡尔树)的更多相关文章

  1. POJ 2201 Cartesian Tree ——笛卡尔树

    [题目分析] 构造一颗笛卡尔树,然后输出这棵树即可. 首先进行排序,然后用一个栈维护最右的树的节点信息,插入的时候按照第二关键字去找,找到之后插入,下面的树成为它的左子树即可. 然后插入分三种情况讨论 ...

  2. 笛卡尔树Cartesian Tree

    前言 最近做题目,已经不止一次用到笛卡尔树了.这种数据结构极为优秀,但是构造的细节很容易出错.因此写一篇文章做一个总结. 笛卡尔树 Cartesian Tree 引入问题 有N条的长条状的矩形,宽度都 ...

  3. 笛卡尔树 POJ ——1785 Binary Search Heap Construction

    相应POJ 题目:点击打开链接 Binary Search Heap Construction Time Limit: 2000MS   Memory Limit: 30000K Total Subm ...

  4. POJ 2559 Largest Rectangle in a Histogram ——笛卡尔树

    [题目分析] 本来是单调栈的题目,用笛卡尔树可以快速的水过去. 把每一个矩阵看成一个二元组(出现的顺序,高度). 然后建造笛卡尔树. 神奇的发现,每一个节点的高度*该子树的大小,就是这一块最大的子矩阵 ...

  5. POJ 1785 Binary Search Heap Construction(裸笛卡尔树的构造)

    笛卡尔树: 每个节点有2个关键字key.value.从key的角度看,这是一颗二叉搜索树,每个节点的左子树的key都比它小,右子树都比它大:从value的角度看,这是一个堆. 题意:以字符串为关键字k ...

  6. [模板] 笛卡尔树 && RMQ

    话说我noip之前为什么要学这种东西... 简介 笛卡尔树(Cartesian Tree) 是一种二叉树, 且同时具有以下两种性质: 父亲节点的值大于/小于子节点的值; 中序遍历的结果为原序列. 笛卡 ...

  7. NOIP2011pj表达式的值[树形DP 笛卡尔树 | 栈 表达式解析]

    题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式A⊕B × ...

  8. 平衡树及笛卡尔树讲解(旋转treap,非旋转treap,splay,替罪羊树及可持久化)

    在刷了许多道平衡树的题之后,对平衡树有了较为深入的理解,在这里和大家分享一下,希望对大家学习平衡树能有帮助. 平衡树有好多种,比如treap,splay,红黑树,STL中的set.在这里只介绍几种常用 ...

  9. [乱搞]hdu 6406 Taotao picks apples 笛卡尔树+倍增

    题目链接 Problem Description There is an apple tree in front of Taotao's house. When autumn comes, n app ...

随机推荐

  1. 每天学点Linux命令之 vi 命令

    来学一个vi的命令.要完成的是在一个只读文件中,删掉一行,然后插入两行. 那只读文件你要修改,用sudo vi 总可以了吧.首先 vi命令进入编辑模式. 在非插入模式中: h 光标左移  l 光标右移 ...

  2. [转]linux grep命令

    转自:http://www.cnblogs.com/end/archive/2012/02/21/2360965.html 1.作用Linux系统中grep命令是一种强大的文本搜索工具,它能使用正则表 ...

  3. Elasticsearch之CURL命令的mget查询

    我这里, 再,创建一个zhouls2的索引库. [hadoop@master elasticsearch-]$ curl -XPUT 'http://master:9200/zhouls2/' {]$ ...

  4. python框架之Flask基础篇(一)

    一.第一个hello world程序 # coding=utf-8 from flask import Flask app = Flask(__name__) @app.route('/') def ...

  5. Android开发之ThreadLocal原理深入理解

    [Android]ThreadLocal的定义和用途 ThreadLocal用于实现在不同的线程中存储线程私有数据的类.在多线程的环境中,当多个线程需要对某个变量进行频繁操作,同时各个线程间不需要同步 ...

  6. jQuery实现页面锚点滚动效果

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. 【PL/SQL】触发器示例:记录加薪

    首先创建一张表,用于保存薪资变化情况: --创建加薪记录表 CREATE TABLE scott.raisedsalarylog ( empno ) NOT NULL PRIMARY KEY, --员 ...

  8. html——快捷键

    webstorm ctrl+c 复制 ctrl+v 粘贴 ctrl+x 剪切一行或删除一行 ctrl+d 复制本行到下一行 ctrl+z 退回之前操作 ctrl+shift+z 已经做好的退回之后的下 ...

  9. lnmp环境搭建后续-php安装

    安装PHP7: 下载# wget http://PHP.net/get/php-7.0.2.tar.gz/from/a/mirror 建议安装之前先看看安装帮助文件INSTALL 解压安装 # tar ...

  10. eclipse的任务列表

    如上图所示,备注加  TODO  ,可以在tasks列表中显示,提示你还有哪些工作需要完善 昨天遇到一个问题,加了  TODO  任务列表里却不显示,后来发现是因为任务列表只显示了前100条,而我的项 ...