Medical Image Report论文合辑
Learning to Read Chest X-Rays:Recurrent Neural Cascade Model for Automated Image Annotation (CVPR 2016)
Goals:
-Learn to read chest x-rays from an existing dataset of images and text with minimal human effort
-To generate text description about disease in image as well as their context (with pre-defined grammar, thus not multiple-instance-learning)
Approach
-Text-mining based image labeling;train CNN for image, RNN for text
-Extensive regularization (e.g.,batch-normalization, data dropout) to deal with data bias(normal vs. diseased)
-Joint image/text context vector for more composite image labeling


The above picture is an illustration of how joint image/text context vector is obtained. RNN's state vector (h) is initialized with the CNN image embedding (CNN(I)), and it's unrolled over the annotation sequences with the words as input. Mean-pooling is applied over the state vectors in each word of the sequence, to obtain the joint image/text vector. All RNNs share the same parameters, which are trained in the first round.
MDNet: A Semantically and Visually Interpretable Medical Image Diagnosis Network (CVPR 2017)
MDNet can read images, generate diagnostic reports, retrieve images by symptom descriptions, and visualize network attention.
TandemNet: Distilling Knowledge from Medical Images Using Diagnostic Reports as Optional Semantic References (MICCAI 2017)
Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation (NIPS 2018)
On the Automatic Generation of Medical Imaging Reports (ACL 2018)

Datasets: IU X-Ray , PEIR Gross
ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases (CVPR 2017) Xiaosong Wang
从标题就可以看到这篇论文和Medical Image Report没啥关系, 为了便于继续学习后面的TieNet,还是将它放在这里。
TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays (CVPR 2018) Xiaosong Wang
Reading a chest X-ray image remains a challenging job for learning-oriented machine intelligence ,due to
(1).shortage of large-scale machine-learnable medical image datasets
(2).lack of techniques that can mimic the high-level reasoning of human radiologists that requires years of knowledge accumulation and professional training.
Contributions:
(1).proposed the Text-Image Embedding Network, which is a multi-purpose end-to-end trainable multi-task CNN-RNN framework
(2).show how raw report data, together with paired image, can be utilized to produce meaningful attention-based image and text representations using the proposed TieNet.
(3).outline how the developed text and image embeddings are able to boost the auto-annotation framework and achieve extremely high accuracy for chest x-ray labeling
(4).present a novel image classification framework which takes images as the sole input, but uses the paired text-image representations from training as a prior knowledge injection, in order to produce improved classification scores and preliminary report generations.
Datasets: ChestX-ray14, Hand-labeled, OpenI

The CNN component additionally includes a convolutional layer(transition layer) to manipulate the spatial grid size and feature dimension.

To obtain an interpretable global text and visual embedding for the purpose of classification, introduce two key enhancements in the form of the AETE and SW-GAP
AETE: Attention Encoded Text Embedding
SW-GAP: Saliecny Weighted Global Average Pooling
Knowledge-Driven Encode, Retrieve, Paraphrase for Medical Image Report Generation (AAAI 2019)
Christy Y. Li, Xiaodan Liang**, Zhiting Hu, Eric Xing.
End-to-End Knowledge-Routed Relational Dialogue System for Automatic Diagnosis (AAAI 2019)
Lin Xu, Qixian Zhou, Ke Gong, Xiaodan Liang**, Jianheng Tang, Liang Lin.
Medical Image Report论文合辑的更多相关文章
- Image Caption论文合辑2
说明: 这个合辑里面的论文不全是Image Caption, 但大多和Image Caption相关, 同时还有一些Workshop论文. Guiding Long-Short Term Memory ...
- Image Captioning 经典论文合辑
Image Caption: Automatically describing the content of an image domain:CV+NLP Category:(by myself, y ...
- Image Paragraph论文合辑
A Hierarchical Approach for Generating Descriptive Image Paragraphs (CPVR 2017) Li Fei-Fei. 数据集地址: h ...
- 【Tips】史上最全H1B问题合辑——保持H1B身份终级篇
[Tips]史上最全H1B问题合辑——保持H1B身份终级篇 2015-04-10留学小助手留学小助手 留学小助手 微信号 liuxue_xiaozhushou 功能介绍 提供最真实全面的留学干货,帮您 ...
- SSH三大框架合辑的搭建步骤
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...
- 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...
- 【OpenCV新手教程之十八】OpenCV仿射变换 & SURF特征点描写叙述合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨) ...
- 【OpenCV新手教程之十七】OpenCV重映射 & SURF特征点检測合辑
本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/30974513 作者:毛星云(浅墨) ...
- [OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...
随机推荐
- 应用:udp聊天器
说明 在一个电脑中编写1个程序,有2个功能 1.获取键盘数据,并将其发送给对方 2.接收数据并显示 并且功能数据进行选择以上的2个功能调用 要求 实现上述程序 参考代码 import socketde ...
- MethodInterceptor拦截器
http://blog.csdn.net/heirenheiren/article/details/39030767
- PHP移动互联网开发笔记(4)——自定义函数及数组
一.自定义函数 自定义函数就是我们自己定义的函数,在PHP中自定义函数格式如下: function funname(arg1, arg2, arg3......){ //TODO return val ...
- js进阶 10-11/12 表单伪类选择器的作用
js进阶 10-11 表单伪类选择器的作用 一.总结 一句话总结:能想到用伪类选择器来解决问题.如果能一次记住自然是最棒的. 1.表单伪类选择器分为哪两类? 表单元素和表单属性,表单元素例如inpu ...
- Tomcat系列之服务器的安装与配置以及各组件详解
Tomcat系列之服务器的安装与配置以及各组件详解 大纲 一.前言 二.安装与配置Tomcat 三.Tomcat 目录的结构 四.Tomcat 配置文件 注,本文的测试的操作系统为CentOS 6.4 ...
- windows 安装 RabbitMQ 并添加用户 – 畅玩Coding
原文:windows 安装 RabbitMQ 并添加用户 – 畅玩Coding 1.RabbitMQ 使用 Eralng,所以需要先安装 Eralng 下载: http://www.erlang.or ...
- SVM明确的解释1__
线性可分问题
笔者:liangdas 出处:简单点儿,通俗点儿,机器学习 http://blog.csdn.net/liangdas/article/details/44251469 引言: 1995年Cor ...
- matlab 格式化文本文件的解析
比如这样一种格式化的文本文件,文件说明及下载地址:/pub/machine-learning-databases/statlog/german/ 的索引 fid = fopen('german.dat ...
- Dx bad class file magic (cafebabe) or version (0033.0000) ant打包遇到问题2
在进行ant进行打包时会发现下面的提示话语言 后来在网上搜索答案,问题得以解决,下面是传送门 门:http://blog.k-res.net/archives/1501.html 里面提到问题的原因是 ...
- C++中的类与对象模型
一,C/C++内存模型 1.内存模型分类 栈区:由编译器自动分配和释放,用来存放函数的参数,局部变量.存放在栈中的数据只在当前函数及下一层函数中有效,函数一旦结束,这些数据就被释放了. 堆区:由程序员 ...