Learning to Read Chest X-Rays:Recurrent Neural Cascade Model for Automated Image Annotation (CVPR 2016)

Goals:

-Learn to read chest x-rays from an existing dataset of images and text with minimal human effort

-To generate text description about disease in image as well as their context (with pre-defined grammar, thus not multiple-instance-learning)

Approach

-Text-mining based image labeling;train CNN for image, RNN for text

-Extensive regularization (e.g.,batch-normalization, data dropout) to deal with data bias(normal vs. diseased)

-Joint image/text context vector for more composite image labeling

The above picture is an illustration of how joint image/text context vector is obtained. RNN's state vector (h) is initialized with the CNN image embedding (CNN(I)), and it's unrolled over the annotation sequences with the words as input. Mean-pooling is applied over the state vectors in each word of the sequence, to obtain the joint image/text vector. All RNNs share the same parameters, which are trained in the first round.

MDNet: A Semantically and Visually Interpretable Medical Image Diagnosis Network (CVPR 2017)

MDNet can read images, generate diagnostic reports, retrieve images by symptom descriptions, and visualize network attention.

TandemNet: Distilling Knowledge from Medical Images Using Diagnostic Reports as Optional Semantic References (MICCAI 2017)

Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation (NIPS 2018)

On the Automatic Generation of Medical Imaging Reports (ACL 2018)

Datasets: IU X-Ray , PEIR Gross

ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases (CVPR 2017) Xiaosong Wang

从标题就可以看到这篇论文和Medical  Image Report没啥关系, 为了便于继续学习后面的TieNet,还是将它放在这里。

TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays (CVPR 2018) Xiaosong Wang

Reading a chest X-ray image remains a challenging job for learning-oriented machine intelligence ,due to

(1).shortage of large-scale machine-learnable medical image datasets

(2).lack of techniques that can mimic the high-level reasoning of human radiologists that requires years of knowledge accumulation and professional training.

Contributions:

(1).proposed the Text-Image Embedding Network, which is a multi-purpose end-to-end trainable multi-task CNN-RNN framework

(2).show how raw report data, together with paired image, can be utilized to produce meaningful attention-based image and text representations using the proposed TieNet.

(3).outline how the developed text and image embeddings are able to boost the auto-annotation framework and achieve extremely high accuracy for chest x-ray labeling

(4).present a novel image classification framework which takes images as the sole input, but uses the paired text-image representations from training as a prior knowledge injection, in order to produce improved classification scores and preliminary report generations.

Datasets: ChestX-ray14, Hand-labeled, OpenI

The CNN component additionally includes a convolutional layer(transition layer) to manipulate the spatial grid size and feature dimension.

To obtain an interpretable global text and visual embedding for the purpose of classification, introduce two key enhancements in the form of the AETE and SW-GAP

AETE: Attention Encoded Text Embedding

SW-GAP: Saliecny Weighted Global Average Pooling

Knowledge-Driven Encode, Retrieve, Paraphrase for Medical Image Report Generation (AAAI 2019)
Christy Y. Li, Xiaodan Liang**, Zhiting Hu, Eric Xing.

End-to-End Knowledge-Routed Relational Dialogue System for Automatic Diagnosis (AAAI 2019)
Lin Xu, Qixian Zhou, Ke Gong, Xiaodan Liang**, Jianheng Tang, Liang Lin.

Medical Image Report论文合辑的更多相关文章

  1. Image Caption论文合辑2

    说明: 这个合辑里面的论文不全是Image Caption, 但大多和Image Caption相关, 同时还有一些Workshop论文. Guiding Long-Short Term Memory ...

  2. Image Captioning 经典论文合辑

    Image Caption: Automatically describing the content of an image domain:CV+NLP Category:(by myself, y ...

  3. Image Paragraph论文合辑

    A Hierarchical Approach for Generating Descriptive Image Paragraphs (CPVR 2017) Li Fei-Fei. 数据集地址: h ...

  4. 【Tips】史上最全H1B问题合辑——保持H1B身份终级篇

    [Tips]史上最全H1B问题合辑——保持H1B身份终级篇 2015-04-10留学小助手留学小助手 留学小助手 微信号 liuxue_xiaozhushou 功能介绍 提供最真实全面的留学干货,帮您 ...

  5. SSH三大框架合辑的搭建步骤

    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...

  6. 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...

  7. 【OpenCV新手教程之十八】OpenCV仿射变换 & SURF特征点描写叙述合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨)  ...

  8. 【OpenCV新手教程之十七】OpenCV重映射 & SURF特征点检測合辑

    本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/30974513 作者:毛星云(浅墨)  ...

  9. [OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑

    http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...

随机推荐

  1. Java IO流经典练习题(mark用)

    一.练习的题目 (一) 在电脑D盘下创建一个文件为HelloWorld.txt文件,判断他是文件还是目录,在创建一个目录IOTest,之后将HelloWorld.txt移动到IOTest目录下去:之后 ...

  2. svn: E200033: database is locked解决办法

    svn执行update,却被告知database is locked! 执行 svn update,却抛出个错误警报: svn: E200033: database is locked, execut ...

  3. Objective-C编码规范[译]

    原文链接 : The official raywenderlich.com Objective-C style guide 原文作者 : raywenderlich.com Team 译文出自 : r ...

  4. Mybatis找不到参数错误:There is no getter for property named 'categoryId' in 'class java.lang.Integer'。

    Mybatis找不到参数错误:There is no getter for property named 'categoryId' in 'class java.lang.Integer'. 错误Li ...

  5. 二维高斯滤波器(gauss filter)的实现

    我们以一个二维矩阵表示二元高斯滤波器,显然此二维矩阵的具体形式仅于其形状(shape)有关: def gauss_filter(kernel_shape): 为实现二维高斯滤波器,需要首先定义二元高斯 ...

  6. 轻松学习JavaScript十八:DOM编程学习之DOM简单介绍

    一DOM概述 DOM(文档对象模型)是HTML和XML的应用程序接口(API).DOM将把整个页面规划成由节点层级构成的文档. DOM描绘了一个层次化的节点树,执行开发者加入,移除和改动页面的某一部分 ...

  7. WatchDog工作原理

    Android系统中,有硬件WatchDog用于定时检测关键硬件是否正常工作,类似地,在framework层有一个软件WatchDog用于定期检测关键系统服务是否发生死锁事件. watchdog的源码 ...

  8. 使用ant编译项目技能

    ant编译时指定jdk的版本号 系统的jdk版本号是1.6,而项目使用的jdk版本号是1.5.所以在编译时须要指定jdk的版本号为1.5,能够使用以下的方法为javac 任务指定fork和execut ...

  9. Notes on OpenSSL and Qt(ssl.pri,qsslocket_openssl_symbols.cpp)

    Libraries name of openssl? The "library" portion of OpenSSL consists of two libraries. On ...

  10. Python 工具类与工具函数 —— pair

    def pair(lis): n = len(lis) for i in range(n): for j in range(i+1, n): yield lis[i], lis[j] 这样在调用端,访 ...