Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 1123 Accepted Submission(s): 595

Problem Description

Let’s play a card game called Gap.

You have 28 cards labeled with two-digit numbers. The first digit (from 1 to 4) represents the suit of the card, and the second digit (from 1 to 7) represents the value of the card.

First, you shu2e the cards and lay them face up on the table in four rows of seven cards, leaving a space of one card at the extreme left of each row. The following shows an example of initial layout.

Next, you remove all cards of value 1, and put them in the open space at the left end of the rows: “11” to the top row, “21” to the next, and so on.

Now you have 28 cards and four spaces, called gaps, in four rows and eight columns. You start moving cards from this layout.

At each move, you choose one of the four gaps and fill it with the successor of the left neighbor of the gap. The successor of a card is the next card in the same suit, when it exists. For instance the successor of “42” is “43”, and “27” has no successor.

In the above layout, you can move “43” to the gap at the right of “42”, or “36” to the gap at the right of “35”. If you move “43”, a new gap is generated to the right of “16”. You cannot move any card to the right of a card of value 7, nor to the right of a gap.

The goal of the game is, by choosing clever moves, to make four ascending sequences of the same suit, as follows.

Your task is to find the minimum number of moves to reach the goal layout.

Input

The input starts with a line containing the number of initial layouts that follow.

Each layout consists of five lines - a blank line and four lines which represent initial layouts of four rows. Each row has seven two-digit numbers which correspond to the cards.

Output

For each initial layout, produce a line with the minimum number of moves to reach the goal layout. Note that this number should not include the initial four moves of the cards of value 1. If there is no move sequence from the initial layout to the goal layout, produce “-1”.

Sample Input

4

12 13 14 15 16 17 21

22 23 24 25 26 27 31

32 33 34 35 36 37 41

42 43 44 45 46 47 11

26 31 13 44 21 24 42

17 45 23 25 41 36 11

46 34 14 12 37 32 47

16 43 27 35 22 33 15

17 12 16 13 15 14 11

27 22 26 23 25 24 21

37 32 36 33 35 34 31

47 42 46 43 45 44 41

27 14 22 35 32 46 33

13 17 36 24 44 21 15

43 16 45 47 23 11 26

25 37 41 34 42 12 31

Sample Output

0

33

60

-1

【题目链接】:http://acm.hdu.edu.cn/showproblem.php?pid=1067

【题解】



搜索题。

这题的判重方法和八数码类似;

把整张4*8的图降成一维的图;

判重的时候转换成一个字符串判重就好;

在bfs的队列里面

记录

{

———-4*7个数码在哪一个位置;

———-4个空格的位置;

———-当前的步数;

———-这张图用一维字符串的表示;

}

在扩展的时候

枚举4个空格.

看看4个空格左边是什么;

如果是0或者尾数为7就跳过;

否则找到比它大1的数码(我们有记录)的位置;

(二维的坐标和一维的坐标可以通过(x-1)*8+y来转换)

然后调换字符串中两个数目;

更改那个被调换的数目的位置(不要忘了!)

更改空格的位置;

修改当前步数;

入队。

如此循环一下就OK了.

判重用map



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%I64d",&x) typedef pair<int,int> pii;
typedef pair<LL,LL> pll; const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const int goal[32] = {11,12,13,14,15,16,17,0,21,22,23,24,25,26,27,0,31,32,33,34,35,36,37,0,41,42,43,44,45,46,47,0};
const double pi = acos(-1.0);
const int MAXN = 110; struct abc
{
pii po[50],kong[5];
int dis;
string s;
}; char chushi[5][10];
string sgoal,ts;
map <string,int> dic;
queue <abc> dl; bool bfs()
{
dic.clear();
while (!dl.empty()) dl.pop();
abc pre;
pre.dis = 0;pre.s = " ";
int num = 0;
rep1(i,1,4)
{
rep1(j,1,8)
{
pre.s+=chushi[i][j];
if (chushi[i][j]==0)
pre.kong[++num] = {i,j};
else
pre.po[int(chushi[i][j])] = {i,j};
}
}
dic[pre.s] = 1;
if (dic[sgoal])
{
puts("0");
return true;
}
dl.push(pre);
while (!dl.empty())
{
abc temp = dl.front();dl.pop();
for (int i = 1;i <= 4;i++)
{
abc t = temp;
int tx = t.kong[i].fi,ty = t.kong[i].se;
int sz = (tx-1)*8+ty;
int judge = t.s[sz-1];
if (judge==0 || judge%10==7) continue;
int tx1 = t.po[judge+1].fi,ty1 = t.po[judge+1].se;
int sz1 = (tx1-1)*8+ty1;
swap(t.s[sz],t.s[sz1]);
if (!dic[t.s])
{
dic[t.s] = 1;
t.kong[i] = {tx1,ty1};
t.po[judge+1] = {tx,ty};
t.dis++;
if (dic[sgoal])
{
printf("%d\n",t.dis);
return true;
}
dl.push(t);
}
}
}
return false;
} int main()
{
//freopen("F:\\rush.txt","r",stdin);
sgoal = " ";
for (int i = 0;i <= 31;i++)
sgoal+=goal[i];
int T;
rei(T);
while (T--)
{
memset(chushi,0,sizeof chushi);
rep1(i,1,4)
rep1(j,2,8)
{
int x;
rei(x);
chushi[i][j] = x;
if (x%10==1)
swap(chushi[x/10][1],chushi[i][j]);
}
if (!bfs())
puts("-1");
}
return 0;
}

【hdu 1067】Gap的更多相关文章

  1. 【数位dp】【HDU 3555】【HDU 2089】数位DP入门题

    [HDU  3555]原题直通车: 代码: // 31MS 900K 909 B G++ #include<iostream> #include<cstdio> #includ ...

  2. 【HDU 5647】DZY Loves Connecting(树DP)

    pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...

  3. -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】

    [把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...

  4. 【HDU 2196】 Computer(树的直径)

    [HDU 2196] Computer(树的直径) 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 这题可以用树形DP解决,自然也可以用最直观的方法解 ...

  5. 【HDU 2196】 Computer (树形DP)

    [HDU 2196] Computer 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 刘汝佳<算法竞赛入门经典>P282页留下了这个问题 ...

  6. 【HDU 5145】 NPY and girls(组合+莫队)

    pid=5145">[HDU 5145] NPY and girls(组合+莫队) NPY and girls Time Limit: 8000/4000 MS (Java/Other ...

  7. 【hdu 1043】Eight

    [题目链接]:http://acm.hdu.edu.cn/showproblem.php?pid=1043 [题意] 会给你很多组数据; 让你输出这组数据到目标状态的具体步骤; [题解] 从12345 ...

  8. 【HDU 3068】 最长回文

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3068 [算法] Manacher算法求最长回文子串 [代码] #include<bits/s ...

  9. 【HDU 4699】 Editor

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=4699 [算法] 维护两个栈,一个栈放光标之前的数,另外一个放光标之后的数 在维护栈的同时求最大前缀 ...

随机推荐

  1. 使用Multiplayer Networking做一个简单的多人游戏例子-1/2

    原文地址: http://blog.csdn.net/cocos2der/article/details/51006463 本文主要讲述了如何使用Multiplayer Networking开发多人游 ...

  2. 【Codeforces Round #455 (Div. 2) A】Generate Login

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 枚举两个串的前缀长度就好. 组出来. 排序. 取字典序最小的那个. [代码] #include <bits/stdc++.h& ...

  3. 【习题 7-5 UVA-690】Pipeline Scheduling

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 一定在这里写完思路再敲代码!!! 处理出5个工作单元在哪些时刻会被用到. ->设为initstatu 因为每次都会面临之前已经 ...

  4. 洛谷 P2640 神秘磁石

    P2640 神秘磁石 题目背景 在遥远的阿拉德大陆,有一种神秘的磁石,是由魔皇制作出来的, 题目描述 1.若给他一个一维坐标系,那么他的磁力一定要在素数坐标的位置上才能发挥的最大(不管位置坐标的大小, ...

  5. java解压多目录Zip文件(解决中文乱码问题)--转载

    原文地址:http://zhangyongbo.iteye.com/blog/1749439 import java.io.BufferedOutputStream; import java.io.F ...

  6. spring mvc笔记

    80214shuenjian224shuenjian@sina 北风网公开课课程大纲1.学习MVC框架的步骤2.Spring MVC运行机制3.演示Spring MVCAdd Maven suppor ...

  7. [置顶] WebService学习总结(3)——使用java JDK开发WebService

    一.WebService的开发手段 使用Java开发WebService时可以使用以下两种开发手段 1. 使用JDK开发(1.6及以上版本) 2.使用CXF框架开发(工作中) 二.使用JDK开发Web ...

  8. P2P借款的几种情况

    借款,至少出现2种人,借款人和出借人.根据人的性质,企业和个人,分成4种情况. 企业-个人,企业-企业,个人-企业,个人-个人. P2P平台可能出现几种情况: 个人-个人 2种情况:   a. 借款人 ...

  9. 怎样用Adobe Acrobat 7 Pro把PDF文档拆分成多个啊?

    这个pdf文档里有多篇文章,我想把他们分开并分别保存在独立的pdf文档.怎么操作?我的电脑基础不太好,麻烦说得详细一些. Adobe Acrobat 7 Pro拆分PDF文档的方法: 1.点左边的“书 ...

  10. 开发板 视频04_05 ubuntu的联网及基本设置

    4g内存 如果电脑有两g,只能给1.5g 处理器可以根据实际选 usb3.0 或者 2.0 联网模式:: 桥接模式 启动式连接,,,,网是不固定的 仅主机模式,主机和虚拟机在一个网络 第三种联网,自定 ...