【hdu 1067】Gap
Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1123 Accepted Submission(s): 595
Problem Description
Let’s play a card game called Gap.
You have 28 cards labeled with two-digit numbers. The first digit (from 1 to 4) represents the suit of the card, and the second digit (from 1 to 7) represents the value of the card.
First, you shu2e the cards and lay them face up on the table in four rows of seven cards, leaving a space of one card at the extreme left of each row. The following shows an example of initial layout.
Next, you remove all cards of value 1, and put them in the open space at the left end of the rows: “11” to the top row, “21” to the next, and so on.
Now you have 28 cards and four spaces, called gaps, in four rows and eight columns. You start moving cards from this layout.
At each move, you choose one of the four gaps and fill it with the successor of the left neighbor of the gap. The successor of a card is the next card in the same suit, when it exists. For instance the successor of “42” is “43”, and “27” has no successor.
In the above layout, you can move “43” to the gap at the right of “42”, or “36” to the gap at the right of “35”. If you move “43”, a new gap is generated to the right of “16”. You cannot move any card to the right of a card of value 7, nor to the right of a gap.
The goal of the game is, by choosing clever moves, to make four ascending sequences of the same suit, as follows.
Your task is to find the minimum number of moves to reach the goal layout.
Input
The input starts with a line containing the number of initial layouts that follow.
Each layout consists of five lines - a blank line and four lines which represent initial layouts of four rows. Each row has seven two-digit numbers which correspond to the cards.
Output
For each initial layout, produce a line with the minimum number of moves to reach the goal layout. Note that this number should not include the initial four moves of the cards of value 1. If there is no move sequence from the initial layout to the goal layout, produce “-1”.
Sample Input
4
12 13 14 15 16 17 21
22 23 24 25 26 27 31
32 33 34 35 36 37 41
42 43 44 45 46 47 11
26 31 13 44 21 24 42
17 45 23 25 41 36 11
46 34 14 12 37 32 47
16 43 27 35 22 33 15
17 12 16 13 15 14 11
27 22 26 23 25 24 21
37 32 36 33 35 34 31
47 42 46 43 45 44 41
27 14 22 35 32 46 33
13 17 36 24 44 21 15
43 16 45 47 23 11 26
25 37 41 34 42 12 31
Sample Output
0
33
60
-1
【题目链接】:http://acm.hdu.edu.cn/showproblem.php?pid=1067
【题解】
搜索题。
这题的判重方法和八数码类似;
把整张4*8的图降成一维的图;
判重的时候转换成一个字符串判重就好;
在bfs的队列里面
记录
{
———-4*7个数码在哪一个位置;
———-4个空格的位置;
———-当前的步数;
———-这张图用一维字符串的表示;
}
在扩展的时候
枚举4个空格.
看看4个空格左边是什么;
如果是0或者尾数为7就跳过;
否则找到比它大1的数码(我们有记录)的位置;
(二维的坐标和一维的坐标可以通过(x-1)*8+y来转换)
然后调换字符串中两个数目;
更改那个被调换的数目的位置(不要忘了!)
更改空格的位置;
修改当前步数;
入队。
如此循环一下就OK了.
判重用map
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%I64d",&x)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const int goal[32] = {11,12,13,14,15,16,17,0,21,22,23,24,25,26,27,0,31,32,33,34,35,36,37,0,41,42,43,44,45,46,47,0};
const double pi = acos(-1.0);
const int MAXN = 110;
struct abc
{
pii po[50],kong[5];
int dis;
string s;
};
char chushi[5][10];
string sgoal,ts;
map <string,int> dic;
queue <abc> dl;
bool bfs()
{
dic.clear();
while (!dl.empty()) dl.pop();
abc pre;
pre.dis = 0;pre.s = " ";
int num = 0;
rep1(i,1,4)
{
rep1(j,1,8)
{
pre.s+=chushi[i][j];
if (chushi[i][j]==0)
pre.kong[++num] = {i,j};
else
pre.po[int(chushi[i][j])] = {i,j};
}
}
dic[pre.s] = 1;
if (dic[sgoal])
{
puts("0");
return true;
}
dl.push(pre);
while (!dl.empty())
{
abc temp = dl.front();dl.pop();
for (int i = 1;i <= 4;i++)
{
abc t = temp;
int tx = t.kong[i].fi,ty = t.kong[i].se;
int sz = (tx-1)*8+ty;
int judge = t.s[sz-1];
if (judge==0 || judge%10==7) continue;
int tx1 = t.po[judge+1].fi,ty1 = t.po[judge+1].se;
int sz1 = (tx1-1)*8+ty1;
swap(t.s[sz],t.s[sz1]);
if (!dic[t.s])
{
dic[t.s] = 1;
t.kong[i] = {tx1,ty1};
t.po[judge+1] = {tx,ty};
t.dis++;
if (dic[sgoal])
{
printf("%d\n",t.dis);
return true;
}
dl.push(t);
}
}
}
return false;
}
int main()
{
//freopen("F:\\rush.txt","r",stdin);
sgoal = " ";
for (int i = 0;i <= 31;i++)
sgoal+=goal[i];
int T;
rei(T);
while (T--)
{
memset(chushi,0,sizeof chushi);
rep1(i,1,4)
rep1(j,2,8)
{
int x;
rei(x);
chushi[i][j] = x;
if (x%10==1)
swap(chushi[x/10][1],chushi[i][j]);
}
if (!bfs())
puts("-1");
}
return 0;
}
【hdu 1067】Gap的更多相关文章
- 【数位dp】【HDU 3555】【HDU 2089】数位DP入门题
[HDU 3555]原题直通车: 代码: // 31MS 900K 909 B G++ #include<iostream> #include<cstdio> #includ ...
- 【HDU 5647】DZY Loves Connecting(树DP)
pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...
- -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】
[把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...
- 【HDU 2196】 Computer(树的直径)
[HDU 2196] Computer(树的直径) 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 这题可以用树形DP解决,自然也可以用最直观的方法解 ...
- 【HDU 2196】 Computer (树形DP)
[HDU 2196] Computer 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 刘汝佳<算法竞赛入门经典>P282页留下了这个问题 ...
- 【HDU 5145】 NPY and girls(组合+莫队)
pid=5145">[HDU 5145] NPY and girls(组合+莫队) NPY and girls Time Limit: 8000/4000 MS (Java/Other ...
- 【hdu 1043】Eight
[题目链接]:http://acm.hdu.edu.cn/showproblem.php?pid=1043 [题意] 会给你很多组数据; 让你输出这组数据到目标状态的具体步骤; [题解] 从12345 ...
- 【HDU 3068】 最长回文
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3068 [算法] Manacher算法求最长回文子串 [代码] #include<bits/s ...
- 【HDU 4699】 Editor
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=4699 [算法] 维护两个栈,一个栈放光标之前的数,另外一个放光标之后的数 在维护栈的同时求最大前缀 ...
随机推荐
- bootstrap课程9 bootstrap如何实现动画加载进度条的效果
bootstrap课程9 bootstrap如何实现动画加载进度条的效果 一.总结 一句话总结:在bootstrap进度条的基础上添加js(定时器),动态的改变进度条即可.很简单的. 1.路径导航是什 ...
- 循环体(for/while)循环变量的设置
1. 求滑动(移动)平均(moving average) double partialSum = 0; for (int i = 0; i < M-1; ++i) partialSum += A ...
- POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)
依据题意可构造出方程组.方程组的每一个方程格式均为:C1*x1 + C2*x2 + ...... + C9*x9 = sum + 4*ki; 高斯消元构造上三角矩阵,以最后一个一行为例: C*x9 = ...
- [React] Configure a React & Redux Application For Production Deployment and Deploy to Now
In this lesson, we’ll make a few small changes to our scripts and add some environment variables tha ...
- Codeforces Round 363 Div. 1 (A,B,C,D,E,F)
Codeforces Round 363 Div. 1 题目链接:## 点击打开链接 A. Vacations (1s, 256MB) 题目大意:给定连续 \(n\) 天,每天为如下四种状态之一: 不 ...
- Javascript和jquery事件--滚动条事件和自定义滚动条事件样式
很想把滚动条事件跟鼠标滚轮事件放在一起,那就直接写在这一篇了.除了事件以外,对滚动条样式的调整也记在这里吧. 滚动条是浏览器的默认事件,使用overflow:auto/scroll都有可能出现,它的默 ...
- Spring Boot 热部署(转)
Spring Boot 热部署 实际开发中,修改某个页面数据或逻辑功能都需要重启应用.这无形中降低了开发效率,所以使用热部署是十分必要的. 什么是热部署? 应用启动后会把编译好的Class文件加载的虚 ...
- C#复习题
1.以下(D )不是 C#中方法的參数的类型. A.值类型B.引用型C.输出型D.属性 2.C#中的数据类型分为值类型和引用类型,以下(B )不属于引用类型. A.类 B.枚举 C.接口 D.数组 3 ...
- [Angular2 Router] Preload lzay loading modules
From router v3.1.0, we have preloading system with router. PreloadAllModules After the init module l ...
- python的报错
1;; //////////////////////////////////////////////////////////////////////////////////////////////// ...