[JLOI2015]装备购买(线性基)
[JLOI2015]装备购买
题目描述
脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ,a_j, \ldots , a_m)\) 表示 \(1 \leq i \leq n\), \(1 \leq j \leq m\),每个装备需要花费 \(c_i\) ,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备。对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了。
严格的定义是,如果脸哥买了 \(\mathbf{z_{i_1}}\), \(\ldots\) , \(\mathbf{z_{i_p}}\) 这 \(p\) 件装备,那么对于任意待决定的 \(\mathbf{z_h}\) ,不存在 \(b_1\), \(\ldots ,b_p\) 使得 \(b_1\mathbf{z_{i_1}} + \ldots + b_p\mathbf{z_{i_p}} = \mathbf{z_h}\) ( \(b_i\) 均是实数),那么脸哥就会买 \(\mathbf{z_h}\) ,否则 \(\mathbf{z_h}\) 对脸哥就是无用的了,自然不必购买。
举个例子, \(\mathbf{z_1}=(1, 2, 3), \ \mathbf{z_2}=(3, 4, 5), \ \mathbf{z_h}=(2, 3, 4)\), \(\ b_1 =\frac{1}{2}, \ b_2 =\frac{1}{2}\),就有 \(b_1\mathbf{z_1} + b_2\mathbf{z_2} = \mathbf{z_h}\) ,那么如果脸哥买了 \(\mathbf{z_1}\) 和 \(\mathbf{z_2}\) 就不会再买 \(\mathbf{z_h}\) 了。
脸哥想要在买下最多数量的装备的情况下花最少的钱,你能帮他算一下吗?
输入输出格式
输入格式:
第一行两个数 n,m。接下来 n 行,每行 m 个数,其中第 i 行描述装备 i 的各项属性值。接下来一行 n 个数,其中 \(c_i\) 表示购买第 i 件装备的花费。
输出格式:
一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费
输入输出样例
输入样例#1: 复制
3 3
1 2 3
3 4 5
2 3 4
1 1 2
输出样例#1: 复制
2 2
说明
如题目中描述,选择装备 1 装备 2,装备 1 装备 3,装备 2 装备 3 均可,但选择装备 1 和装备 2 的花费最小,为 2。
对于 100% 的数据, 1 <= n;m <= 500; 0 <= aj <= 1000。
题解
这是一道线性基的原理题。咕咕咕
线性基的思想是由向量来表示的。
也就是说:
存在\(b_1\), \(\ldots ,b_p\) 使得 \(b_1\mathbf{z_{i_1}} + \ldots + b_p\mathbf{z_{i_p}} = \mathbf{z_h}\) ( \(b_i\) 均是实数)
就像物理里面的力的分解一样。
多个不同方向和不同或相同大小的力可以构成另外一个合力。
其实异或只是线性基的另一种oi思想。
我们把向量的每一维看做二进制。只是这里的二进制是一个实数而不只是01序列。那么我们就用高斯消元的思想,不断的把从1到n维度的实数用之前的数去消掉。这样的话,就得到了一个类似而二进制的最高位1的数组的最高位下标就是最高位维度的数组。
是不是就和线性基一样了?
再加一个贪心维护让小价值的拼出大价值的就好了。
代码
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
const double eps=1e-5;
int p[1001],n,m,ans,sum;
struct node{
int vi;
double x[1001];
}a[1001];
bool cmp(node a,node b){
return a.vi<b.vi;
}
void solve()
{
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(fabs(a[i].x[j])>eps){
if(!p[j]){
p[j]=i;
sum++;
ans+=a[i].vi;
break;
}
else {
double t=(double)(1.0*a[i].x[j])/(1.0*a[p[j]].x[j]);
for(int k=j;k<=m;k++){
a[i].x[k]-=t*(a[p[j]].x[k]);
}
}
}
}
}
printf("%d %d",sum,ans);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%lf",&a[i].x[j]);
for(int i=1;i<=n;i++)
scanf("%d",&a[i].vi);
sort(a+1,a+n+1,cmp);
solve();
return 0;
}
[JLOI2015]装备购买(线性基)的更多相关文章
- BZOJ 4004 [JLOI2015]装备购买 | 线性基
题目链接 Luogu P3265 题解 非常正常的线性基! 但是我不会线性基-- (吐槽:#define double long double 才过--) #include <cstdio> ...
- BZOJ 4004 [JLOI2015]装备购买 ——线性基
[题目分析] 题目很简单,就是要维护一个实数域上的线性基. 仿照异或空间的线性基的方法,排序之后每次加入一个数即可. 卡精度,开long double 和 1e-6就轻松水过了. [代码] #incl ...
- bzoj4004 [JLOI2015]装备购买——线性基+贪心
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4004 今天讲课讲到的题,据说满足拟阵的性质,所以贪心是正确的: 总之就贪心,按价格从小到大排 ...
- BZOJ_4004_[JLOI2015]装备购买_线性基
BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...
- bzoj 4004 [JLOI2015]装备购买 拟阵+线性基
[JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1820 Solved: 547[Submit][Status][Dis ...
- BZOJ 4004: [JLOI2015]装备购买
4004: [JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1154 Solved: 376[Submit][Statu ...
- 【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元
[BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 ( ...
- bzoj 4004: [JLOI2015]装备购买 拟阵 && 高消
4004: [JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 337 Solved: 139[Submit][Status ...
- [JLOI2015]装备购买 (高斯消元)
[JLOI2015]装备购买 \(solution:\) 首先这道题的题面已经非常清晰的告诉我们这就是线性空间高斯消元的一道题(可以用某些装备来表示另一件装备,这已经不能再明显了),只是这道题要求我们 ...
随机推荐
- php面向对象的基础:OOP的常量
常量(constant) 用来表示不会改变的值.对于从该类实例化的任何对象来说,常量值在这些对象的整个生命周期中都保持不变. class Computer{ const PI=3.1415926; } ...
- nf_conntrack: table full, dropping packet. 问题
查出目前 ip_conntrack 记录最多的前十名 IP: # cat /proc/net/nf_conntrack|awk '{print $8}'|cut -d'=' -f 2|sort |un ...
- GDOI2017 再次酱油记
Day 0 13:00 pm 啊...今天中午一点钟从ez出发,感觉吼有趣啊.出发前先大喊一声****,在书包里放一本党史,感觉玄学可以救命[滑稽] 15:00 pm 到达东莞,坐标:石龙名冠金凯悦大 ...
- vue路由知识整理
vue路由知识整理 对于单页应用,官方提供了vue-router进行路由跳转的处理.我们已经可以通过组合组件来组成应用程序,当你要把 vue-router 添加进来,我们需要做的是,将组件(compo ...
- 紫书 例题 11-1 UVa 12219 (表达式树)
这道题看了刘汝佳的代码真的是天秀, 很值得学习. 具体看代码 #include<cstdio> #include<iostream> #include<cctype> ...
- Java8 Lamdba表达式 002
本篇将讲述lamdba表达式的排序,本例包括一个Player对象的集合[稍后定义],通过每一个player的分数高低对列表的player进行排序.类定义001例如以下 public class Sor ...
- (cLion、RubyMine、PyCharm、WebStorm、PhpStorm、Appcode、Clion、Idea) 万能破解,获取自己的注冊码
听说cLion的ide编写c/c++很的棒.今天下载了一个仅仅有30天的使用时间.作为程序猿破解它. 下载破解文件 | 点击下载 |password: 7biu 解压压缩包,然后打开命令行 cd 到解 ...
- Precision and recall From Wiki
Precision.全部推断为正样本的数量里面,有多少是真正的正样本.就是精确率 Recall.所有的正样本里面,检測到了多少真正的正样本,又称查全率.即所有正样本查找到了多少的比率.
- GraphicsMagick java.io.FileNotFoundException: gm 错误解决办法
GraphicsMagick java.io.FileNotFoundException: gm 解决办法, 方法一: ProcessStarter.setGlobalSearchPath(" ...
- 关于MAVEN找不到JDK的那点事
自从SUN被Oracle收购以后.JDK就由Oracle来提供了. 在新版本号之中,假设你下载安装JDK以后,又选择了JRE安装(当然,如今JRE直接叫做Java了),那么,恭喜你,在 C:\wind ...