[JLOI2015]装备购买

题目描述

脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ,a_j, \ldots , a_m)\) 表示 \(1 \leq i \leq n\), \(1 \leq j \leq m\),每个装备需要花费 \(c_i\) ,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备。对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了。

严格的定义是,如果脸哥买了 \(\mathbf{z_{i_1}}\), \(\ldots\) , \(\mathbf{z_{i_p}}\) 这 \(p\) 件装备,那么对于任意待决定的 \(\mathbf{z_h}\)​ ,不存在 \(b_1\), \(\ldots ,b_p\) 使得 \(b_1\mathbf{z_{i_1}} + \ldots + b_p\mathbf{z_{i_p}} = \mathbf{z_h}\) ​​ ( \(b_i\)​ 均是实数),那么脸哥就会买 \(\mathbf{z_h}\)​ ,否则 \(\mathbf{z_h}\)​ 对脸哥就是无用的了,自然不必购买。

举个例子, \(\mathbf{z_1}=(1, 2, 3), \ \mathbf{z_2}=(3, 4, 5), \ \mathbf{z_h}=(2, 3, 4)\), \(\ b_1 =\frac{1}{2}, \ b_2 =\frac{1}{2}\),就有 \(b_1\mathbf{z_1} + b_2\mathbf{z_2} = \mathbf{z_h}\) ,那么如果脸哥买了 \(\mathbf{z_1}\)​ 和 \(\mathbf{z_2}\)​ 就不会再买 \(\mathbf{z_h}\) 了。

脸哥想要在买下最多数量的装备的情况下花最少的钱,你能帮他算一下吗?

输入输出格式

输入格式:

第一行两个数 n,m。接下来 n 行,每行 m 个数,其中第 i 行描述装备 i 的各项属性值。接下来一行 n 个数,其中 \(c_i\) 表示购买第 i 件装备的花费。

输出格式:

一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费

输入输出样例

输入样例#1: 复制

3 3

1 2 3

3 4 5

2 3 4

1 1 2

输出样例#1: 复制

2 2

说明

如题目中描述,选择装备 1 装备 2,装备 1 装备 3,装备 2 装备 3 均可,但选择装备 1 和装备 2 的花费最小,为 2。

对于 100% 的数据, 1 <= n;m <= 500; 0 <= aj <= 1000。


题解

这是一道线性基的原理题。咕咕咕

线性基的思想是由向量来表示的。

也就是说:

存在\(b_1\), \(\ldots ,b_p\) 使得 \(b_1\mathbf{z_{i_1}} + \ldots + b_p\mathbf{z_{i_p}} = \mathbf{z_h}\) ​​ ( \(b_i\)​ 均是实数)

就像物理里面的力的分解一样。

多个不同方向和不同或相同大小的力可以构成另外一个合力。

其实异或只是线性基的另一种oi思想。

我们把向量的每一维看做二进制。只是这里的二进制是一个实数而不只是01序列。那么我们就用高斯消元的思想,不断的把从1到n维度的实数用之前的数去消掉。这样的话,就得到了一个类似而二进制的最高位1的数组的最高位下标就是最高位维度的数组。

是不是就和线性基一样了?

再加一个贪心维护让小价值的拼出大价值的就好了。


代码


#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
const double eps=1e-5;
int p[1001],n,m,ans,sum;
struct node{
int vi;
double x[1001];
}a[1001]; bool cmp(node a,node b){
return a.vi<b.vi;
} void solve()
{
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(fabs(a[i].x[j])>eps){
if(!p[j]){
p[j]=i;
sum++;
ans+=a[i].vi;
break;
}
else {
double t=(double)(1.0*a[i].x[j])/(1.0*a[p[j]].x[j]);
for(int k=j;k<=m;k++){
a[i].x[k]-=t*(a[p[j]].x[k]);
}
}
}
}
}
printf("%d %d",sum,ans);
} int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%lf",&a[i].x[j]);
for(int i=1;i<=n;i++)
scanf("%d",&a[i].vi);
sort(a+1,a+n+1,cmp);
solve();
return 0;
}

[JLOI2015]装备购买(线性基)的更多相关文章

  1. BZOJ 4004 [JLOI2015]装备购买 | 线性基

    题目链接 Luogu P3265 题解 非常正常的线性基! 但是我不会线性基-- (吐槽:#define double long double 才过--) #include <cstdio> ...

  2. BZOJ 4004 [JLOI2015]装备购买 ——线性基

    [题目分析] 题目很简单,就是要维护一个实数域上的线性基. 仿照异或空间的线性基的方法,排序之后每次加入一个数即可. 卡精度,开long double 和 1e-6就轻松水过了. [代码] #incl ...

  3. bzoj4004 [JLOI2015]装备购买——线性基+贪心

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4004 今天讲课讲到的题,据说满足拟阵的性质,所以贪心是正确的: 总之就贪心,按价格从小到大排 ...

  4. BZOJ_4004_[JLOI2015]装备购买_线性基

    BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...

  5. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

  6. BZOJ 4004: [JLOI2015]装备购买

    4004: [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1154  Solved: 376[Submit][Statu ...

  7. 【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元

    [BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 ( ...

  8. bzoj 4004: [JLOI2015]装备购买 拟阵 && 高消

    4004: [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 337  Solved: 139[Submit][Status ...

  9. [JLOI2015]装备购买 (高斯消元)

    [JLOI2015]装备购买 \(solution:\) 首先这道题的题面已经非常清晰的告诉我们这就是线性空间高斯消元的一道题(可以用某些装备来表示另一件装备,这已经不能再明显了),只是这道题要求我们 ...

随机推荐

  1. DotNetCore.1.0.1-VS2015Tools.Preview2.0.3 相关问题及解决办法

    本月16号,MS发布了 .NET Core 1.1.作为一个用贯MS产品的小盆友,我第一时间就把相关的安装包下载下来了,然后果断安装(入坑). 我猜你来看这篇博客可能遇到了和我一样的问题. 问题0:正 ...

  2. Mybatis传递多个参数的解决办法(三种)

    第一种方案 DAO层的函数方法 Public User selectUser(String name,String area); 对应的Mapper.xml <select id="s ...

  3. (2016北京集训十)【xsy1528】azelso - 概率期望dp

    北京集训的题都是好题啊~~(于是我爆0了) 注意到一个重要的性质就是期望是线性的,也就是说每一段的期望步数可以直接加起来,那么dp求出每一段的期望就行了... 设$f_i$表示从$i$出发不回到$i$ ...

  4. 是否可以从一个static方法内部发出对非static方法的调用

    不可以.因为非static方法是要与对象关联在一起的,必须创建一个对象后,才可以在该对象上进行方 法调用,而static方法调用时不需要创建对象,可以直接调用.也就是说,当一个static方法被调用时 ...

  5. 紫书 例题11-4 UVa247 (Floyd判断联通)

    Floyd联通, 然后为了输出联通分量而新建一个图, 让互相可以打电话的建立一条边, 然后dfs输出联通分量就ok了. #include<cstdio> #include<iostr ...

  6. 紫书 习题8-11 UVa 1615 (区间选点问题)

    这个点就是贪心策略中的区间选点问题. 把右端点从大到小排序, 左端点从小到大排序. 每次取区间右端点就可以了, 到不能覆盖的时候就ans++, 重新取点 ps:这道题不考虑精度也可以过 要着重复习一下 ...

  7. 【BZOJ 1177】 [Apio2009]Oil

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 如上图. 显然如果三个正方形.只可能是上面的情况. 则可以处理一下左上角.右上角.左下角.右下角的前缀最大正方形(dp),以及以某一 ...

  8. hadoop-13-root ssh无密码登陆

    hadoop-13-root ssh无密码登陆 生产机器禁止ROOT远程SSH登录: vi /etc/ssh/sshd_config 把 PermitRootLogin yes 改为 PermitRo ...

  9. Leetcode:Singel Number

    问题描写叙述: Given an array of integers, every element appears twice except for one. Find that single one ...

  10. 由动态库文件dll生成lib库文件

    本文基于OpenBlas的编译和安装.来说明怎样从一个dll文件生成lib库文件. 參考OpenBlas的说明"Howto generate import library for MingW ...