[JLOI2015]装备购买(线性基)
[JLOI2015]装备购买
题目描述
脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ,a_j, \ldots , a_m)\) 表示 \(1 \leq i \leq n\), \(1 \leq j \leq m\),每个装备需要花费 \(c_i\) ,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备。对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了。
严格的定义是,如果脸哥买了 \(\mathbf{z_{i_1}}\), \(\ldots\) , \(\mathbf{z_{i_p}}\) 这 \(p\) 件装备,那么对于任意待决定的 \(\mathbf{z_h}\) ,不存在 \(b_1\), \(\ldots ,b_p\) 使得 \(b_1\mathbf{z_{i_1}} + \ldots + b_p\mathbf{z_{i_p}} = \mathbf{z_h}\) ( \(b_i\) 均是实数),那么脸哥就会买 \(\mathbf{z_h}\) ,否则 \(\mathbf{z_h}\) 对脸哥就是无用的了,自然不必购买。
举个例子, \(\mathbf{z_1}=(1, 2, 3), \ \mathbf{z_2}=(3, 4, 5), \ \mathbf{z_h}=(2, 3, 4)\), \(\ b_1 =\frac{1}{2}, \ b_2 =\frac{1}{2}\),就有 \(b_1\mathbf{z_1} + b_2\mathbf{z_2} = \mathbf{z_h}\) ,那么如果脸哥买了 \(\mathbf{z_1}\) 和 \(\mathbf{z_2}\) 就不会再买 \(\mathbf{z_h}\) 了。
脸哥想要在买下最多数量的装备的情况下花最少的钱,你能帮他算一下吗?
输入输出格式
输入格式:
第一行两个数 n,m。接下来 n 行,每行 m 个数,其中第 i 行描述装备 i 的各项属性值。接下来一行 n 个数,其中 \(c_i\) 表示购买第 i 件装备的花费。
输出格式:
一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费
输入输出样例
输入样例#1: 复制
3 3
1 2 3
3 4 5
2 3 4
1 1 2
输出样例#1: 复制
2 2
说明
如题目中描述,选择装备 1 装备 2,装备 1 装备 3,装备 2 装备 3 均可,但选择装备 1 和装备 2 的花费最小,为 2。
对于 100% 的数据, 1 <= n;m <= 500; 0 <= aj <= 1000。
题解
这是一道线性基的原理题。咕咕咕
线性基的思想是由向量来表示的。
也就是说:
存在\(b_1\), \(\ldots ,b_p\) 使得 \(b_1\mathbf{z_{i_1}} + \ldots + b_p\mathbf{z_{i_p}} = \mathbf{z_h}\) ( \(b_i\) 均是实数)
就像物理里面的力的分解一样。
多个不同方向和不同或相同大小的力可以构成另外一个合力。
其实异或只是线性基的另一种oi思想。
我们把向量的每一维看做二进制。只是这里的二进制是一个实数而不只是01序列。那么我们就用高斯消元的思想,不断的把从1到n维度的实数用之前的数去消掉。这样的话,就得到了一个类似而二进制的最高位1的数组的最高位下标就是最高位维度的数组。
是不是就和线性基一样了?
再加一个贪心维护让小价值的拼出大价值的就好了。
代码
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
const double eps=1e-5;
int p[1001],n,m,ans,sum;
struct node{
int vi;
double x[1001];
}a[1001];
bool cmp(node a,node b){
return a.vi<b.vi;
}
void solve()
{
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(fabs(a[i].x[j])>eps){
if(!p[j]){
p[j]=i;
sum++;
ans+=a[i].vi;
break;
}
else {
double t=(double)(1.0*a[i].x[j])/(1.0*a[p[j]].x[j]);
for(int k=j;k<=m;k++){
a[i].x[k]-=t*(a[p[j]].x[k]);
}
}
}
}
}
printf("%d %d",sum,ans);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%lf",&a[i].x[j]);
for(int i=1;i<=n;i++)
scanf("%d",&a[i].vi);
sort(a+1,a+n+1,cmp);
solve();
return 0;
}
[JLOI2015]装备购买(线性基)的更多相关文章
- BZOJ 4004 [JLOI2015]装备购买 | 线性基
题目链接 Luogu P3265 题解 非常正常的线性基! 但是我不会线性基-- (吐槽:#define double long double 才过--) #include <cstdio> ...
- BZOJ 4004 [JLOI2015]装备购买 ——线性基
[题目分析] 题目很简单,就是要维护一个实数域上的线性基. 仿照异或空间的线性基的方法,排序之后每次加入一个数即可. 卡精度,开long double 和 1e-6就轻松水过了. [代码] #incl ...
- bzoj4004 [JLOI2015]装备购买——线性基+贪心
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4004 今天讲课讲到的题,据说满足拟阵的性质,所以贪心是正确的: 总之就贪心,按价格从小到大排 ...
- BZOJ_4004_[JLOI2015]装备购买_线性基
BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...
- bzoj 4004 [JLOI2015]装备购买 拟阵+线性基
[JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1820 Solved: 547[Submit][Status][Dis ...
- BZOJ 4004: [JLOI2015]装备购买
4004: [JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1154 Solved: 376[Submit][Statu ...
- 【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元
[BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 ( ...
- bzoj 4004: [JLOI2015]装备购买 拟阵 && 高消
4004: [JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 337 Solved: 139[Submit][Status ...
- [JLOI2015]装备购买 (高斯消元)
[JLOI2015]装备购买 \(solution:\) 首先这道题的题面已经非常清晰的告诉我们这就是线性空间高斯消元的一道题(可以用某些装备来表示另一件装备,这已经不能再明显了),只是这道题要求我们 ...
随机推荐
- 【实战经验】64位Win7安装+32位Oracle + PL/SQL 解决方法
软件环境:64位win7.32位Oracle 10g. PL/SQL 9.0.4.1644 前言:以前开发用的都是32位系统,突然换到64位上,安装环境真的有点麻烦了,尤其对于PL/SQL只支持32位 ...
- 51nod 1770 数数字 找规律,注意进位,时间复杂度O(n)
题目: 这题很简单,找规律即可. 考虑两次进位: 1.a*b时的进位. 2.aa*b时加法时进位. 代码: #include <bits\stdc++.h> using namespace ...
- Caffe学习--Blob分析
Caffe_blob 1.基本数据结构 Blob为模板类,可以理解为四维数组,n * c * h * w的结构,Layer内为blob输入data和diff,Layer间的blob为学习的参数.内部封 ...
- sftp权限
用户: t1 t2 根目录: /home/data/ /home/data/t1/ drwxr-xr-x. 2 t1 t1 4096 Mar 24 17:26 t1 /home/data/t2/ dr ...
- Python读取Matlab的.mat文件
参考网站: https://blog.csdn.net/rumswell/article/details/8545087 数据: R 22*22 double 部分截图如下: 使用sicpy.io即可 ...
- MyBatis中关于SQL标签的用法(重用SQL 代码段)
一. 没用sql标签前的SQL映射代码: <select id="findById" resultType="cn.tedu.mybatis.entity.User ...
- Description Resource Path Location Type Cannot change version of project fac(导入maven项目出现红叉问题)
项目现象如下: 这是由于你的 Maven 编译级别是 jdk太低了 解决方法: 1.在eclipse的工程上选择属性,在选择Project Facets里面中选择Dynamic web Module, ...
- springboot --> web 应用开发-CORS 支持
一.Web 开发经常会遇到跨域问题,解决方案有:jsonp,iframe,CORS 等等 CORS 与 JSONP 相比 1. JSONP 只能实现 GET 请求,而 CORS 支持所有类型的 HTT ...
- Linux 磁盘管理及分区
硬盘结构和基础知识 扇区(Sector)为最小的物理储存单位,每个扇区为512 bytes,将扇区组成一个圆就是磁道(track),不同磁盘的相同磁道组成磁柱(Cylinder),磁柱是分区(par ...
- vue中使用viewerjs
项目创建 插件Viewer.js vue init webpack mytest001 安装viewerjs npm install viewerjs 删掉生成的项目里面的helloWord.vue ...