Dirichlet's Theorem on Arithmetic Progressions
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 15398   Accepted: 7714

Description

If a and d are relatively prime positive integers, the arithmetic sequence beginning with a and increasing by d, i.e., aa + da + 2da + 3da + 4d, ..., contains infinitely many prime numbers. This fact is known as Dirichlet's Theorem on Arithmetic Progressions, which had been conjectured by Johann Carl Friedrich Gauss (1777 - 1855) and was proved by Johann Peter Gustav Lejeune Dirichlet (1805 - 1859) in 1837.

For example, the arithmetic sequence beginning with 2 and increasing by 3, i.e.,

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, ... ,

contains infinitely many prime numbers

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, ... .

Your mission, should you decide to accept it, is to write a program to find the nth prime number in this arithmetic sequence for given positive integers ad, and n.

Input

The input is a sequence of datasets. A dataset is a line containing three positive integers ad, and n separated by a space. a and d are relatively prime. You may assume a <= 9307, d <= 346, and n <= 210.

The end of the input is indicated by a line containing three zeros separated by a space. It is not a dataset.

Output

The output should be composed of as many lines as the number of the input datasets. Each line should contain a single integer and should never contain extra characters.

The output integer corresponding to a dataset adn should be the nth prime number among those contained in the arithmetic sequence beginning with a and increasing by d.

FYI, it is known that the result is always less than 106 (one million) under this input condition.

Sample Input

367 186 151
179 10 203
271 37 39
103 230 1
27 104 185
253 50 85
1 1 1
9075 337 210
307 24 79
331 221 177
259 170 40
269 58 102
0 0 0

Sample Output

92809
6709
12037
103
93523
14503
2
899429
5107
412717
22699
25673

Source

 
 #include <stdio.h>
#include <string.h>
#define MAX 1000000
int s[MAX];
int main()
{
int a,d,n,i,j,k;
memset(s,,sizeof(s));
s[]=;
for(i=;i<MAX/;i++)
{
if(!s[i])
{
for(j=i+i;j<MAX;j+=i)
s[j]=;
}
}
while(scanf("%d%d%d",&a,&d,&n),a||d||n)
{
int num=,t;
for(i=;;i++)
{
if(s[a+i*d]==)
{
num++;
if(num==n)
{
t=a+i*d;
break;
}
}
}
printf("%d\n",t);
}
return ;
}

//本想着会超时,没想到竟然没有超时,100万以内的素数282MS

poj_3006_Dirichlet's Theorem on Arithmetic Progressions_201407041030的更多相关文章

  1. Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  2. Dirichlet's Theorem on Arithmetic Progression

    poj3006 Dirichlet's Theorem on Arithmetic Progressions 很显然这是一题有关于素数的题目. 注意数据的范围,爆搜超时无误. 这里要用到筛选法求素数. ...

  3. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  4. Fundamental theorem of arithmetic 为什么1不是质数

    https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic In number theory, the fundamental th ...

  5. poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】

    题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...

  6. (素数求解)I - Dirichlet&#39;s Theorem on Arithmetic Progressions(1.5.5)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit cid=1006#sta ...

  7. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 素数 难度:0

    http://poj.org/problem?id=3006 #include <cstdio> using namespace std; bool pm[1000002]; bool u ...

  8. poj 3006 Dirichlet's Theorem on Arithmetic Progressions

    题目大意:a和d是两个互质的数,则序列a,a+d,a+2d,a+3d,a+4d ...... a+nd 中有无穷多个素数,给出a和d,找出序列中的第n个素数 #include <cstdio&g ...

  9. POJ 3006 Dirichlet&#39;s Theorem on Arithmetic Progressions 快筛质数

    题目大意:给出一个等差数列,问这个等差数列的第n个素数是什么. 思路:这题主要考怎样筛素数,线性筛.详见代码. CODE: #include <cstdio> #include <c ...

随机推荐

  1. andorid IOS 判断APP下载

    <?phpif(strpos($_SERVER['HTTP_USER_AGENT'], 'iPhone')||strpos($_SERVER['HTTP_USER_AGENT'], 'iPad' ...

  2. (Nginx+Apache)实现反向代理与负载均衡

    反向代理负载均衡 使用代理服务器可以将请求转发给内部的Web服务器,使用这种加速模式显然可以提升静态网页的访问速度.因此也可以考虑使用这种技术,让代理服务器将请求均匀转发给多台内部Web服务器之一上, ...

  3. C#代码规范(简版)

    C#项目代码规范 目的 1.方便代码的交流和维护. 2.不影响编码的效率,不与大众习惯冲突. 3.使代码更美观.阅读更方便. 4.使代码的逻辑更清晰.更易于理解. 在C#中通常使用的两种编码方式如下 ...

  4. php5.6.30开启redis扩展

    注:5.6版本的php一定要下载phpredis3.0以上的版本,之前自己下载用的2.2.4的redis,安装配置完成后,PHP死活不支持redis的扩展,通过phpinfo打印也压根看不到,重复服务 ...

  5. Bootstrap modal使用及点击外部不消失的解决方法

    这篇文章主要为大家详细介绍了Bootstrap modal使用及点击外部不消失的解决方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 本文实例为大家分享了Bootstrap modal使用及点击 ...

  6. 浮动qq客服备份代码

    <div class="main-im"> <div id="open_im" class="open-im"> & ...

  7. 比较 String,StringBuffer,StringBuilder

    1)三者在执行速度方面的比较:StringBuilder >  StringBuffer  >  String 2)String <(StringBuffer,StringBuild ...

  8. 使用VS Code调试Flutter(检查用户页面)

    官方提供的是Flutter Widget Inspector,详见https://flutterchina.club/inspector/ 我用的是另外一种好用的调试工具 Dart DevTools ...

  9. node.js querystring类介绍

    querystring 模块提供了一些实用函数,用于解析与格式化 URL 查询字符串. 使用以下方法引入: const querystring = require('querystring'); 此类 ...

  10. 1.C#冒泡排序

    冒泡 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.这步做完后,最后的元素会是最大的数. 针对所有的元素重复以上的步骤,除了最后一 ...