bzoj1233 [Usaco2009Open]干草堆tower 【单调队列dp】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1233
单调队列优化的第一题,搞了好久啊,跟一开始入手斜率优化时感觉差不多。。。
这一题想通了之后其实不是很难,主要是需要拐弯的地方有点点多,直接写正解叭~
首先,这一题要求的是最大叠多少层。可以这样想:最底层的长度越小,层数越高。尽管这不是很严格,不过还算是比较显然(但是根本就没往这上面想啊!),因为越窄,就会越高嘛。换句话说“最大能叠多少层”等价于“最底层长度最小为多少”!只要这个想通了,基本就差不多了。
倒着dp,f[i]为从第i到第n的干草堆都使用了,最底层的长度的最小值。s[i]是前缀和。那么dp方程是:
f[i] = min(s[j - 1] - s[i - 1]) (f[j] <= s[j - 1] - s[i - 1])
附加条件移项得,s[i - 1] <= s[j - 1] - f[j],也就是说,s[j - 1] - f[j]越大,就越有可能作为决策。
裸的是O(N^2)。发现当j越小,s[j - 1] - s[i - 1]就会越小,所以应该取符合"s[i - 1] <= s[j - 1] - f[j]"这一条件的最小的j,这就用单调队列维护咯。当j < k时,若s[j - 1] - f[j] >= s[k - 1] - f[k],则k一定不能作为决策,因为k比j大,对于“当j越小,s[j - 1] - s[i - 1]就会越小”这个条件已经不利了,它的s[k - 1] - f[k]还要更小,更不利了,果断舍弃。
答案要的是最多叠几层,用个g数组,g[i]表示从第i到第n的干草堆都使用了,最多叠几层。则g[i] = g[j] + 1,j就是对于f[i] = min(s[j - 1] - s[i - 1])的决策的那个j
#include <cstdio> const int maxn = ; int n, s[maxn], f[maxn], g[maxn], que[maxn], head, tail; int main(void) {
scanf("%d", &n);
for (int i = ; i <= n; ++i) {
scanf("%d", s + i);
s[i] += s[i - ];
} que[tail++] = n + ;
for (int i = n; i; --i) {
while (head < tail - && s[i - ] <= s[que[head + ] - ] - f[que[head + ]]) {
++head;
}
f[i] = s[que[head] - ] - s[i - ];
g[i] = g[que[head]] + ;
while (head < tail && s[i - ] - f[i] >= s[que[tail - ] - ] - f[que[tail - ]]) {
--tail;
}
que[tail++] = i;
}
printf("%d\n", g[]);
return ;
}
bzoj1233 [Usaco2009Open]干草堆tower 【单调队列dp】的更多相关文章
- bzoj1233[Usaco2009Open]干草堆tower 单调队列优化dp
1233: [Usaco2009Open]干草堆tower Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 983 Solved: 464[Submi ...
- BZOJ1233 [Usaco2009Open]干草堆tower 【单调队列优化dp】
题目链接 BZOJ1233 题解 有一个贪心策略:同样的干草集合,底长小的一定不比底长大的矮 设\(f[i]\)表示\(i...N\)形成的干草堆的最小底长,同时用\(g[i]\)记录此时的高度 那么 ...
- BZOJ1233 [Usaco2009Open]干草堆tower[贪心+单调队列优化]
地址 注意思路!多看几遍! 很巧妙的一道题.不再是决策点以dp值中一部分含j项为维护对象,而是通过维护条件来获取决策. 首先有个贪心策略,让底层的宽度尽可能小,才能让高度尽可能高.所以应该倒着dp,表 ...
- bzoj1233: [Usaco2009Open]干草堆tower
Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的干草(1<=N<=100000)(从1到N编号) ...
- BZOJ1233 [Usaco2009Open]干草堆tower 和 BZOJ3549 [ONTAK2010]Tower
题意 Problem 3549. -- [ONTAK2010]Tower 3549: [ONTAK2010]Tower Time Limit: 10 Sec Memory Limit: 64 MBS ...
- 【BZOJ 1233】 [Usaco2009Open]干草堆tower (单调队列优化DP)
1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...
- bzoj 1233: [Usaco2009Open]干草堆tower
1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...
- bzoj 1233: [Usaco2009Open]干草堆tower 【想法题】
首先这题的$n^3$的DP是比较好想的 $f[i][j]$表示用前$i$包干草 且最顶层为第$j+1$包到第$i$包 所能达到的最大高度 然而数据范围还是太大了 因此我们需要去想一想有没有什么单调性 ...
- 1233: [Usaco2009Open]干草堆tower
传送门 感觉正着做不太好搞,考虑倒过来搞 容易想到贪心,每一层都贪心地选最小的宽度,然后发现 $WA$ 了... 因为一开始多选一点有时可以让下一层宽度更小 然后有一个神奇的结论,最高的方案一定有一种 ...
随机推荐
- kvm虚拟化学习笔记(二)之linux kvm虚拟机安装
KVM虚拟化学习笔记系列文章列表----------------------------------------kvm虚拟化学习笔记(一)之kvm虚拟化环境安装http://koumm.blog.51 ...
- 设计模式之解释器模式(Interpreter)摘录
23种GOF设计模式一般分为三大类:创建型模式.结构型模式.行为模式. 创建型模式抽象了实例化过程,它们帮助一个系统独立于怎样创建.组合和表示它的那些对象.一个类创建型模式使用继承改变被实例化的类,而 ...
- web爬虫之登录google paly 商店
我们先打开Google play 首页 ,点击右上角"登陆"button,即跳到登陆页面 每次我要用爬虫的方式来登陆某个站点的时候,我都会先随便输入一个账号password点击登陆 ...
- phpqrcode生成带logo的二维码图片及带文字的二维码图片
<?php require_once "./phpqrcode/phpqrcode.php"; /** * 这样就可以生成二维码了,实际上在png这个方法里还有几个参数需要使 ...
- CodeForces 300C Beautiful Numbers(乘法逆元/费马小定理+组合数公式+高速幂)
C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- autofac如何注册静态方法里的接口对象
标题可能是不准确的,因为我不知道如何描述.不知道的原因,是对依赖注入一知半解. Autofac可以自动注册对象实例到接口,人所尽知.而在asp.net mvc中,这个实例化的工作,通常在每个控制器的构 ...
- (22) java web的struts2框架的使用-struts配置文件
1,配置文件的引用 struts中配置文件可以有多个,每个模块的包里面都可以单独设立一个struts配置文件. 主的配置文件,放在“src”文件夹下,可以引入其他配置文件,引入方式: <!-- ...
- intellij IDEA破解
方法1 填入下面的license server: http://intellij.mandroid.cn/ http://idea.imsxm.com/ http://idea.iteblog.com ...
- iOS设备,fixed布局出问题
window.deviceId = '{{$deviceId}}'; window.iOS = navigator.userAgent.match(/(iPad|iPhone|iPod)/g) ? t ...
- 网络驱动移植之例解netdev_priv函数
版权声明:本文为博主原创文章,未经博主允许不得转载. 开发平台:Ubuntu 11.04 编译器:gcc version 4.5.2 (Ubuntu/Linaro 4.5.2-8ubuntu4) 内核 ...