题目链接:https://vjudge.net/problem/URAL-1519

1519. Formula 1

Time limit: 1.0 second
Memory limit: 64 MB

Background

Regardless of the fact, that Vologda could not get rights to hold the Winter Olympic games of 20**, it is well-known, that the city will conduct one of the Formula 1 events. Surely, for such an important thing a new race circuit should be built as well as hotels, restaurants, international airport - everything for Formula 1 fans, who will flood the city soon. But when all the hotels and a half of the restaurants were built, it appeared, that at the site for the future circuit a lot of gophers lived in their holes. Since we like animals very much, ecologists will never allow to build the race circuit over the holes. So now the mayor is sitting sadly in his office and looking at the map of the circuit with all the holes plotted on it.

Problem

Who will be smart enough to draw a plan of the circuit and keep the city from inevitable disgrace? Of course, only true professionals - battle-hardened programmers from the first team of local technical university!.. But our heroes were not looking for easy life and set much more difficult problem: "Certainly, our mayor will be glad, if we find how many ways of building the circuit are there!" - they said.
It should be said, that the circuit in Vologda is going to be rather simple. It will be a rectangle N*M cells in size with a single circuit segment built through each cell. Each segment should be parallel to one of rectangle's sides, so only right-angled bends may be on the circuit. At the picture below two samples are given for N = M = 4 (gray squares mean gopher holes, and the bold black line means the race circuit). There are no other ways to build the circuit here.

Input

The first line contains the integer numbers N and M (2 ≤ NM ≤ 12). Each of the next N lines contains M characters, which are the corresponding cells of the rectangle. Character "." (full stop) means a cell, where a segment of the race circuit should be built, and character "*" (asterisk) - a cell, where a gopher hole is located. There are at least 4 cells without gopher holes.

Output

You should output the desired number of ways. It is guaranteed, that it does not exceed 263-1.

Samples

input output
4 4
**..
....
....
....
2
4 4
....
....
....
....
6
Problem Author: Nikita Rybak, Ilya Grebnov, Dmitry Kovalioff
Problem Source: Timus Top Coders: Third Challenge
 

题意:

用一个回路去走完所有的空格,问有多少种情况?

题解:

1.学习插头DP的必经之路:《基于连通性状态压缩的动态规划问题》

2.HDU1693 Eat the Trees 这题的加强版。

3.相对于HDU1693,由于此题限制了只能用一个回路,所以在处理的时候,需要记录轮廓线上,每个插头分别属于哪个连通分量的,以此避免形成多个回路。

4.由于m<=12,故连通分量最多为12/2 = 6个,再加上没有插头的情况,所以轮廓线上每个位置的状态共有7种,为了加快速度,我们采用8进制对其进行压缩。

5.对于一条轮廓线,最多有:8^(12+1)种状态,所以直接用数组进行存储或者直接枚举所以状态是不可行的。但我们知道其中有许多状态是无效的,所以我们采用哈希表来存在有效状态,即能解决空间有限的问题,还能减少直接枚举所需要的时间花费。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e5;
const int HASH = 1e4; int n, m, last_x, last_y;
bool maze[][]; struct //注意哈希表的大小
{
int size, head[HASH], next[MAXN];
LL state[MAXN], sum[MAXN]; void init()
{
size = ;
memset(head, -, sizeof(head));
} void insert(LL status, LL Sum)
{
int u = status%HASH;
for(int i = head[u]; i!=-; i = next[i])
{
if(state[i]==status)
{
sum[i] += Sum;
return;
}
}
state[size] = status; //头插法
sum[size] = Sum;
next[size] = head[u];
head[u] = size++;
} }Hash_map[]; struct
{
int code[]; //用于记录轮廓线上每个位置的插头状态
LL encode(int m) //编码:把轮廓线上的信息压缩到一个longlong类型中
{
LL status = ;
int id[], cnt = ;
memset(id, -, sizeof(id));
id[] = ;
for(int i = m; i>=; i--) //从高位到低位。为每个连通块重新编号,采用最小表示法。
{
if(id[code[i]]==-) id[code[i]] = ++cnt;
code[i] = id[code[i]];
status <<= ; //编码
status += code[i];
}
return status;
} void decode(int m, LL status) //解码:将longlong类型中轮廓线上的信息解码到数组中
{
memset(code, , sizeof(code));
for(int i = ; i<=m; i++) //从低位到高位
{
code[i] = status&;
status >>= ;
}
} void shift(int m) //左移:在每次转行的时候都需要执行。
{
for(int i = m-; i>=; i--)
code[i+] = code[i];
code[] = ;
} }Line; void transfer_blank(int i, int j, int cur)
{
for(int k = ; k<Hash_map[cur].size; k++) //枚举上一个格子所有合法的状态
{
LL status = Hash_map[cur].state[k]; //得到状态
LL Sum = Hash_map[cur].sum[k]; //得到数量
Line.decode(m, status); //对状态进行解码
int up = Line.code[j]; //得到上插头
int left = Line.code[j-]; //得到下插头 if(!up && !left) //没有上、左插头,新建分量
{
if(maze[i+][j] && maze[i][j+]) //如果新建的两个插头所指向的两个格子可行,新建的分量才合法
{
Line.code[j] = Line.code[j-] = ; //为新的分量编号,最大的状态才为6
Hash_map[cur^].insert(Line.encode(m), Sum);
}
}
else if( (left&&!up) || (!left&&up) ) //仅有其中一个插头,延续分量
{
int line = left?left:up; //记录是哪一个插头
if(maze[i][j+]) //往右延伸
{
Line.code[j-] = ;
Line.code[j] = line;
Hash_map[cur^].insert(Line.encode(m), Sum);
}
if(maze[i+][j]) //往下延伸
{
Line.code[j-] = line;
Line.code[j] = ;
if(j==m) Line.shift(m);
Hash_map[cur^].insert(Line.encode(m), Sum);
}
}
else //上、左插头都存在,尝试合并。
{
if(up!=left) //如果两个插头属于两个联通分量,那么就合并
{
Line.code[j] = Line.code[j-] = ;
for(int t = ; t<=m; t++) //随便选一个编号最为他们合并后分量的编号
if(Line.code[t]==up)
Line.code[t] = left;
if(j==m) Line.shift(m);
Hash_map[cur^].insert(Line.encode(m), Sum);
}
else if(i==last_x && j==last_y) //若两插头同属一个分量,则只能在最后的可行格中合并,否则会出现多个联通分量
{
Line.code[j] = Line.code[j-] = ;
if(j==m) Line.shift(m);
Hash_map[cur^].insert(Line.encode(m), Sum);
}
}
}
} void transfer_block(int i, int j, int cur)
{
for(int k = ; k<Hash_map[cur].size; k++)
{
LL status = Hash_map[cur].state[k]; //得到状态
LL Sum = Hash_map[cur].sum[k]; //得到数量
Line.decode(m, status);
Line.code[j] = Line.code[j-] = ;
if(j==m) Line.shift(m);
Hash_map[cur^].insert(Line.encode(m), Sum);
}
} int main()
{
char s[];
while(scanf("%d%d", &n, &m)!=EOF)
{
memset(maze, false, sizeof(maze));
for(int i = ; i<=n; i++)
{
scanf("%s", s+);
for(int j = ; j<=m; j++)
{
if(s[j]=='.')
{
maze[i][j] = true;
last_x = i; //记录最后一个可行格
last_y = j;
}
}
} int cur = ;
Hash_map[cur].init(); //初始化
Hash_map[cur].insert(, ); //插入初始状态
for(int i = ; i<=n; i++)
for(int j = ; j<=m; j++)
{
Hash_map[cur^].init();
if(maze[i][j])
transfer_blank(i, j, cur);
else
transfer_block(i, j ,cur);
cur ^= ;
} LL last_status = ; //最后的轮廓线就是最后一行,且每个位置都没有插头
LL ans = Hash_map[cur].size?Hash_map[cur].sum[last_status]:;
printf("%I64d\n", ans);
}
}

URAL1519 Formula 1 —— 插头DP的更多相关文章

  1. [URAL1519] Formula 1 [插头dp入门]

    题面: 传送门 思路: 插头dp基础教程 先理解一下题意:实际上就是要你求这个棋盘中的哈密顿回路个数,障碍不能走 看到这个数据范围,还有回路处理,就想到使用插头dp来做了 观察一下发现,这道题因为都是 ...

  2. 【BZOJ1814】Ural 1519 Formula 1 插头DP

    [BZOJ1814]Ural 1519 Formula 1 题意:一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数.(n,m<=12) 题解:插头DP板子题,刷板 ...

  3. 【Ural】1519. Formula 1 插头DP

    [题目]1519. Formula 1 [题意]给定n*m个方格图,有一些障碍格,求非障碍格的哈密顿回路数量.n,m<=12. [算法]插头DP [题解]<基于连通性状态压缩的动态规划问题 ...

  4. bzoj1814 Ural 1519 Formula 1(插头dp模板题)

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 924  Solved: 351[Submit][Sta ...

  5. bzoj 1814 Ural 1519 Formula 1 ——插头DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1814 普通的插头 DP .但是调了很久.注意如果合并两个 1 的话,不是 “把向右第一个 2 ...

  6. Ural 1519 Formula 1 插头DP

    这是一道经典的插头DP单回路模板题. 用最小表示法来记录连通性,由于二进制的速度,考虑使用8进制. 1.当同时存在左.上插头的时候,需要判断两插头所在连通块是否相同,若相同,只能在最后一个非障碍点相连 ...

  7. URAL Formula 1 ——插头DP

    [题目分析] 一直听说这是插头DP入门题目. 难到爆炸. 写了2h,各种大常数,ural垫底. [代码] #include <cstdio> #include <cstring> ...

  8. bzoj 1814 Ural 1519 Formula 1 插头DP

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 942  Solved: 356[Submit][Sta ...

  9. BZOJ1814: Ural 1519 Formula 1(插头Dp)

    Description Regardless of the fact, that Vologda could not get rights to hold the Winter Olympic gam ...

随机推荐

  1. poj1930 数论

    Dead Fraction Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 1258   Accepted: 379 Desc ...

  2. oracle禁止插入、延迟插入方法

    DATE_ADD(DATE_ADD(curdate(),INTERVAL +6 HOUR),INTERVAL +6 DAY) mysql取当前日期后6天,截止到6点钟的方法 --直接报错 CREATE ...

  3. 10款GitHub上最火爆的国产开源项目

    衡量一个开源产品好不好,看看产品在 GitHub 的 Star 数量就知道了.由此可见,GitHub 已经沦落为开源产品的“大众点评”了.一个开源产品希望快速的被开发者知道.快速的获取反馈,放到 Gi ...

  4. CentOS 7.5 安装Docker 教程

    Docker简介 Docker是一个开源的容器引擎,它有助于更快地交付应用.Docker可将应用程序和基础设施层隔离,并且能将基础设施当作程序一样进行管理. 使用Docker可更快地打包.测试以及部署 ...

  5. LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位

    #3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...

  6. How to resolve 'Potential Leak' issue

    -1 down vote favorite I am using the 'analyze' tool in xcode to check for potential leakages in my a ...

  7. gdb生成的core文件位置

    gdb可以生成core文件,记录堆栈信息,core文件名字是下面这种格式 :core.9488,其中9488是PID 文件位置是当前目录

  8. 使用 Unicode 编码

    面向公共语言执行库的应用程序使用编码将字符表示形式从本机字符方案(Unicode)映射为其它方案. 应用程序使用解码将字符从非本机方案(非 Unicode)映射为本机方案. System.Text 命 ...

  9. Android开发之入口Activity

    Android开发之入口Activity Adnroid App是怎样确定入口Activity的? 难道就由于class的类名叫MainActivity,布局文件叫activity_main.xml? ...

  10. Odoo HR Payslip

    pay slip 可以录入多条 worked_days_line 和 input_line,用来人工调整薪资变动部分,比如销售提成,扣款等. pay slip 可以包含多个pay slip line ...