题目描述

给定一个有n个正整数的数组A和一个整数sum,求选择数组A中部分数字和为sum的方案数。
当两种选取方案有一个数字的下标不一样,我们就认为是不同的组成方案。

输入描述:

输入为两行:
第一行为两个正整数n(1 ≤ n ≤ 1000),sum(1 ≤ sum ≤ 1000)
第二行为n个正整数A[i](32位整数),以空格隔开。

输出描述:

输出所求的方案数
示例1

输入

5 15 5 5 10 2 3

输出

4
 import java.util.Scanner;

 /**
* @author Dell
*
*/
public class Main {
static public long dp[][];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int sum = sc.nextInt();
int [] p = new int[(int) (n+1)];
/**
* 循环全部从1开始
*
*/
for (int i= 1; i < p.length; i++) {
p[i] = sc.nextInt();
}
dp = new long[n+1][sum+1];
for (int i = 0; i <n+1; i++) {
for (int j = 0; j <sum+1; j++) {
dp[i][j] = 0;
}
}
dp[0][0] = 1; //初始化 0 行
for (int i = 1; i <=n; i++) {
for (int j = 0; j <=sum; j++) { // 0-sum列
long k;
if (j-p[i]<0) {
k = 0;
}else {
k = dp[i-1][j-p[i]];
}
dp[i][j] = dp[i-1][j]+k;
}
}
System.out.println(dp[n][sum]);
}
}

数字和为sum的方法数(动态规划)的更多相关文章

  1. 数字和为sum的方法数

    [编程题] 数字和为sum的方法数 给定一个有n个正整数的数组A和一个整数sum,求选择数组A中部分数字和为sum的方案数. 当两种选取方案有一个数字的下标不一样,我们就认为是不同的组成方案. 输入描 ...

  2. 动态规划:部分和问题和数字和为sum的方法数

    很久之前看过这个题目,但是没有仔细整理,直到现在看基础才想到这两个题.这两个题非常经典也非常类似.接下来分别介绍. 部分和问题 题目描述 给定整数a1.a2........an,判断是否可以从中选出若 ...

  3. 动态规划:数字和为sum的方法数

    题目描述 给定一个有n个正整数的数组A和一个整数sum,求选择数组A中部分数字和为sum的方案数.当两种选取方案有一个数字的下标不一样,我们就认为是不同的组成方案. 输入描述: 输入为两行: 第一行为 ...

  4. [程序员代码面试指南]递归和动态规划-换钱的方法数(DP,完全背包)

    题目描述 给定arr,arr中所有的值都为正数且不重复.每个值代表一种面值的货币,每种面值的货币可以使用任意张,再给定一个整数aim,求组成aim的方法数. 解题思路 完全背包 和"求换钱的 ...

  5. [程序员代码面试指南]递归和动态规划-机器人达到指定位置方法数(一维DP待做)(DP)

    题目描述 一行N个位置1到N,机器人初始位置M,机器人可以往左/右走(只能在位置范围内),规定机器人必须走K步,最终到位置P.输入这四个参数,输出机器人可以走的方法数. 解题思路 DP 方法一:时间复 ...

  6. 算法进阶面试题07——求子数组的最大异或和(前缀树)、换钱的方法数(递归改dp最全套路解说)、纸牌博弈、机器人行走问题

    主要讲第五课的内容前缀树应用和第六课内容暴力递归改动态规划的最全步骤 第一题 给定一个数组,求子数组的最大异或和. 一个数组的异或和为,数组中所有的数异或起来的结果. 简单的前缀树应用 暴力方法: 先 ...

  7. [DP]换钱的方法数

    题目三 给定数组arr, arr中所有的值都为整数且不重复.每个值代表一种面值的货币,每种面值的货币可以使用任意张,在给定一个整数aim代表要找的钱数,求换钱有多少种方法. 解法一 --暴力递归 用0 ...

  8. APK方法数超过65535及MultiDex解决方案

    以下参考自官方文档配置方法数超过 64K 的应用 随着 Android 平台的持续成长,Android 应用的大小也在增加.当您的应用及其引用的库达到特定大小时,您会遇到构建错误,指明您的应用已达到 ...

  9. C++练习 | 掷骰子走到第n步的方法数(DFS)

    玩家根据骰子的点数决定步数,骰子点数为1的时候走一步,以此类推.求玩家走到第n步总共有多少种投骰子的方法.输入为一个整数n,输出为投骰子的方法数. #include <iostream> ...

随机推荐

  1. spring两个核心IOC、AOP

    Spring是一个开放源代码的设计层面框架,他解决的是业务逻辑层和其他各层的松耦合问题,因此它将面向接口的编程思想贯穿整个系统应用.Spring是于2003 年兴起的一个轻量级的Java 开发框架,由 ...

  2. Spring的声明式事务管理<tx:advice/> 有关的设置

    <tx:advice/> 有关的设置 这一节里将描述通过 <tx:advice/> 标签来指定不同的事务性设置.默认的 <tx:advice/> 设置如下: 事务传 ...

  3. GridView选中,编辑,取消,删除代码

    原文发布时间为:2008-08-03 -- 来源于本人的百度文章 [由搬家工具导入] 2.GridView选中,编辑,取消,删除: 效果图: 后台代码:你可以使用sqlhelper,本文没用。代码如下 ...

  4. ORACLE的impdp和expdp命令【登录、创建用户、授权、导入导出】

    使用EXPDP和IMPDP时应该注意的事项: EXP和IMP是客户端工具程序,它们既可以在客户端使用,也可以在服务端使用. EXPDP和IMPDP是服务端的工具程序,他们只能在ORACLE服务端使用, ...

  5. Java 获取指定日期的方法总结 -转

    格式化日期 String-->Date  或者 Data-->String SimpleDateFormat sdf = new SimpleDateFormat("yyyy-M ...

  6. nginx配置 location root alias

    语法规则: location [=|~|~*|^~] /uri/ { … } = 开头表示精确匹配 ^~ 开头表示uri以某个常规字符串开头,理解为匹配 url路径即可.nginx不对url做编码,因 ...

  7. omcat 7 的domain域名配置,Tomcat 修改JSESSIONID

    https://blog.csdn.net/catoop/article/details/64581325

  8. 【编码】封装RedisPubSub工具

    基本介绍 核心原理:利用Redis的List列表实现,发布事件对应rpush,订阅事件对应lpop 问题一:Redis不是自带Pub/Sub吗? redis自带的pub/sub有两个问题: 1.如果发 ...

  9. 详解DNS,你真的懂吗?

    what`s  this ? 概念 域名系统(英文:DomainNameSystem,缩写:DNS)是互联网的一项服务.它作为将域名和IP地址相互映射的一个分布式数据库,能够使人更方便地访问互联网.D ...

  10. T1245 最小的N个和 codevs

    http://codevs.cn/problem/1245/  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 有两个长度 ...