题目描述

给定一个有n个正整数的数组A和一个整数sum,求选择数组A中部分数字和为sum的方案数。
当两种选取方案有一个数字的下标不一样,我们就认为是不同的组成方案。

输入描述:

输入为两行:
第一行为两个正整数n(1 ≤ n ≤ 1000),sum(1 ≤ sum ≤ 1000)
第二行为n个正整数A[i](32位整数),以空格隔开。

输出描述:

输出所求的方案数
示例1

输入

5 15 5 5 10 2 3

输出

4
 import java.util.Scanner;

 /**
* @author Dell
*
*/
public class Main {
static public long dp[][];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int sum = sc.nextInt();
int [] p = new int[(int) (n+1)];
/**
* 循环全部从1开始
*
*/
for (int i= 1; i < p.length; i++) {
p[i] = sc.nextInt();
}
dp = new long[n+1][sum+1];
for (int i = 0; i <n+1; i++) {
for (int j = 0; j <sum+1; j++) {
dp[i][j] = 0;
}
}
dp[0][0] = 1; //初始化 0 行
for (int i = 1; i <=n; i++) {
for (int j = 0; j <=sum; j++) { // 0-sum列
long k;
if (j-p[i]<0) {
k = 0;
}else {
k = dp[i-1][j-p[i]];
}
dp[i][j] = dp[i-1][j]+k;
}
}
System.out.println(dp[n][sum]);
}
}

数字和为sum的方法数(动态规划)的更多相关文章

  1. 数字和为sum的方法数

    [编程题] 数字和为sum的方法数 给定一个有n个正整数的数组A和一个整数sum,求选择数组A中部分数字和为sum的方案数. 当两种选取方案有一个数字的下标不一样,我们就认为是不同的组成方案. 输入描 ...

  2. 动态规划:部分和问题和数字和为sum的方法数

    很久之前看过这个题目,但是没有仔细整理,直到现在看基础才想到这两个题.这两个题非常经典也非常类似.接下来分别介绍. 部分和问题 题目描述 给定整数a1.a2........an,判断是否可以从中选出若 ...

  3. 动态规划:数字和为sum的方法数

    题目描述 给定一个有n个正整数的数组A和一个整数sum,求选择数组A中部分数字和为sum的方案数.当两种选取方案有一个数字的下标不一样,我们就认为是不同的组成方案. 输入描述: 输入为两行: 第一行为 ...

  4. [程序员代码面试指南]递归和动态规划-换钱的方法数(DP,完全背包)

    题目描述 给定arr,arr中所有的值都为正数且不重复.每个值代表一种面值的货币,每种面值的货币可以使用任意张,再给定一个整数aim,求组成aim的方法数. 解题思路 完全背包 和"求换钱的 ...

  5. [程序员代码面试指南]递归和动态规划-机器人达到指定位置方法数(一维DP待做)(DP)

    题目描述 一行N个位置1到N,机器人初始位置M,机器人可以往左/右走(只能在位置范围内),规定机器人必须走K步,最终到位置P.输入这四个参数,输出机器人可以走的方法数. 解题思路 DP 方法一:时间复 ...

  6. 算法进阶面试题07——求子数组的最大异或和(前缀树)、换钱的方法数(递归改dp最全套路解说)、纸牌博弈、机器人行走问题

    主要讲第五课的内容前缀树应用和第六课内容暴力递归改动态规划的最全步骤 第一题 给定一个数组,求子数组的最大异或和. 一个数组的异或和为,数组中所有的数异或起来的结果. 简单的前缀树应用 暴力方法: 先 ...

  7. [DP]换钱的方法数

    题目三 给定数组arr, arr中所有的值都为整数且不重复.每个值代表一种面值的货币,每种面值的货币可以使用任意张,在给定一个整数aim代表要找的钱数,求换钱有多少种方法. 解法一 --暴力递归 用0 ...

  8. APK方法数超过65535及MultiDex解决方案

    以下参考自官方文档配置方法数超过 64K 的应用 随着 Android 平台的持续成长,Android 应用的大小也在增加.当您的应用及其引用的库达到特定大小时,您会遇到构建错误,指明您的应用已达到 ...

  9. C++练习 | 掷骰子走到第n步的方法数(DFS)

    玩家根据骰子的点数决定步数,骰子点数为1的时候走一步,以此类推.求玩家走到第n步总共有多少种投骰子的方法.输入为一个整数n,输出为投骰子的方法数. #include <iostream> ...

随机推荐

  1. 算法复习——带修改莫队(bzoj2453)

    题目: Description 你小时候玩过弹珠吗? 小朋友A有一些弹珠,A喜欢把它们排成队列,从左到右编号为1到N.为了整个队列鲜艳美观,小朋友想知道某一段连续弹珠中,不同颜色的弹珠有多少.当然,A ...

  2. 刷题总结——疫情控制(NOIP2012提高组)

    题目: 题目背景 NOIP2012 提高组 DAY2 试题. 题目描述 H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树,1 号城市是首都,也是树中的根节点. H 国的首都 ...

  3. 【leetcode】lower_bound

    int binary_search(const vector<int>& stones,int val){ int sz=stones.size(); ,r=sz-; while( ...

  4. tyvj 1432 楼兰图腾

    树状数组 本题数据有误 对于每一个点用权值树状数组维护在这个点之后之前的比他大和比他小的数 #include <iostream> #include <cstdio> #inc ...

  5. linux的at定时任务的使用

    linux的at定时任务的使用 使用at只能执行一次性任务:使用at命令需要开启atd进程. 以下情况需要安装at命令: 情况1.查看是否开启atd进程:ps -ef | grep atd.[test ...

  6. yii 之增加数据

    模型代码: <?php namespace app\models; use yii\db\ActiveRecord; class Test extends ActiveRecord{ publi ...

  7. 使用Google浏览器做真机页面调试

    步骤1: 从Windows,Mac或Linux计算机远程调试Android设备上的实时内容.本教程将教您如何: 设置您的Android设备进行远程调试,并从开发机器中发现它.从您的开发机器检查和调试A ...

  8. spring启动时加载字典表数据放入map

    import java.util.HashMap; import java.util.List; import org.springframework.beans.factory.annotation ...

  9. [转] windows下Svn服务器之必须提交修改注释篇

    1. 强制添加注释信息 找到Respositories目录下对应项目里的hooks目录下建立pre-commit.bat文件,复制如下内容: @echo off set SVNLOOK="C ...

  10. android 打开浏览器指定网页

    <?xml version="1.0" encoding="utf-8"?> <!-- 定义当前布局的基本LinearLayout --> ...