Portal

Description

给定一个\(n\times n\)的矩阵\(B\)和一个\(1×n\)的矩阵\(C\)。求出一个\(1×n\)的01矩阵\(A\),使得\(D=(A×B-C)×A^T\)最大,其中\(A^T\)为\(A\)的转置。输出\(D\)。

Solution

先展开一波。

\[\begin{align*}
D &= (A×B-C)×A^T \\
&= \begin{bmatrix} \sum_{i=1}^n a_ib_{i1}-c_1 & \sum_{i=1}^n a_ib_{i2}-c_2 & ... & \sum_{i=1}^n a_ib_{in}-c_n \end{bmatrix} \times A^T \\
&= \sum_{j=1}^n a_j (\sum_{i=1}^n a_ib_{ij}-c_j) \\
&= \sum_{i=1}^n \sum_{j=1}^n a_ia_jb_{ij} - \sum_{i=1}^n a_ic_i
\end{align*}$$ 观察发现,要想获得$b_{ij}$的价值就需要让$a_i=a_j=1$,但如果$a_i$被选就得付出$c_i$的代价。那么同[太空飞行计划](https://loj.ac/problem/6001),求最大权闭合图即可。

##Code
```cpp
//线性代数
#include <cstdio>
#include <cstring>
inline char gc()
{
static char now[1<<16],*S,*T;
if(S==T) {T=(S=now)+fread(now,1,1<<16,stdin); if(S==T) return EOF;}
return *S++;
}
inline int read()
{
int x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
int min(int x,int y) {return x<y?x:y;}
int const N=3e5;
int const INF=0x7FFFFFFF;
int n;
int cnt,h[N];
struct edge{int v,c,nxt;} ed[N*6];
void edAdd(int u,int v,int c)
{
cnt++; ed[cnt].v=v,ed[cnt].c=c,ed[cnt].nxt=h[u],h[u]=cnt;
cnt++; ed[cnt].v=u,ed[cnt].c=0,ed[cnt].nxt=h[v],h[v]=cnt;
}
int s,t;
int dpt[N]; int Q[N],op,cl;
bool bfs()
{
memset(dpt,0,sizeof dpt);
dpt[s]=1,Q[++cl]=s;
while(op<cl)
{
int u=Q[++op]; if(u==t) break;
for(int i=h[u];i;i=ed[i].nxt)
{
int v=ed[i].v;
if(!dpt[v]&&ed[i].c) dpt[v]=dpt[u]+1,Q[++cl]=v;
}
}
return dpt[t];
}
int fill(int u,int in)
{
if(u==t) return in;
int out=0;
for(int i=h[u];i&&in>out;i=ed[i].nxt)
{
int v=ed[i].v,c=ed[i].c;
if(!c||dpt[v]!=dpt[u]+1) continue;
int fl=fill(v,min(in-out,c));
if(!fl) dpt[v]=0;
else out+=fl,ed[i].c-=fl,ed[i^1].c+=fl;
}
return out;
}
int maxFlow()
{
int res=0;
while(bfs()) res+=fill(s,INF);
return res;
}
int main()
{
n=read(); int ans=0;
s=0,t=n*n+n+1; cnt=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
int u=(i-1)*n+j,c=read(); ans+=c;
edAdd(s,u,c); edAdd(u,n*n+i,INF),edAdd(u,n*n+j,INF);
}
for(int i=1;i<=n;i++) edAdd(n*n+i,t,read());
printf("%d\n",ans-maxFlow());
return 0;
}
```

##P.S.
洛谷A了,原数据A了,但BZOJ上RE?!\]

洛谷P3973 - [TJOI2015]线性代数的更多相关文章

  1. 洛谷3973 TJOI2015线性代数(最小割+思维)

    感觉要做出来这个题,需要一定的线代芝士 首先,我们来观察这个柿子. 我们将\(B\)的权值看作是收益的话,\(C\)的权值就是花费. 根据矩阵乘法的原理,只有当\(a[i]和a[j]\)都为\(1\) ...

  2. 【洛谷P3973】[TJOI2015]线性代数(最小割)

    洛谷 题意: 给出一个\(n*n\)的矩阵\(B\),再给出一个\(1*n\)的矩阵\(C\). 求一个\(1*n\)的\(01\)矩阵\(A\),使得\(D=(A\cdot B-C)\cdot A^ ...

  3. 洛谷 [P3973] 线性代数

    最大权闭合子图,神题 这不是线性代数,这是网络流. 我们看见这是一堆矩阵的运算,而且最后变成了一个数,那么我们就想到,把这个矩阵乘法的过程用具体的数字推出来 我们发现,a是一个01矩阵,然后其实就可以 ...

  4. 洛谷 P3975 [TJOI2015]弦论 解题报告

    P3975 [TJOI2015]弦论 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为\(n\)的字符串,求 ...

  5. [洛谷P3975][TJOI2015]弦论

    题目大意:求一个字符串的第$k$大字串,$t$表示长得一样位置不同的字串是否算多个 题解:$SAM$,先求出每个位置可以到达多少个字串($Right$数组),然后在转移图上$DP$,若$t=1$,初始 ...

  6. [洛谷P3978][TJOI2015]概率论

    题目大意:对于一棵随机生成的$n$个结点的有根二叉树,所有不同构的形态等概率出现(这里同构当且仅当两棵二叉树根相同,并且相同节点的左儿子和右儿子都相同),求叶子节点个数的期望是多少? 题解:令$f_n ...

  7. 【BZOJ3996】[TJOI2015]线性代数(最小割)

    [BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...

  8. 【LG3973】[TJOI2015]线性代数

    [LG3973][TJOI2015]线性代数 题面 洛谷 题解 正常解法 一大堆矩阵乘在一起很丑对吧 化一下柿子: \[ D=(A*B-C)*A^T\\ \Leftrightarrow D=\sum_ ...

  9. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

随机推荐

  1. Spark MLlib编程API入门系列之特征提取之主成分分析(PCA)

    不多说,直接上干货! 主成分分析(Principal Component Analysis,PCA), 将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法. 参考 http://blo ...

  2. AJPFX总结面向对象中成员变量和成员方法的定义

    //面向对象中成员变量和成员方法的定义格式:=========================================          成员变量定义在类中方法外,可以被该类中所有方法使用. ...

  3. re正则表达式公式讲解4

    1.re,split()  字符串分离 import re s = "abc20tyu9iou16hij25" m = re.split("\d",s) #以& ...

  4. jQuery中面向对象思想实现盒子内容切换

    这里主要是模拟小米官网中的首页的内容模块实现的主要动态效果 布局:采用了bootstrap框架进行布局,及其其中的字体图标 html: <!-- 内容 --> <div class= ...

  5. Linux 使用常见问题

    1. 如何查看软件安装到什么位置 [Ubuntu] 今天安装了Lxc-docker,想看一下文件都安装到哪里了,首先找到这个包的ersion zhouh1@uhome:~$ dpkg -s lxc-d ...

  6. ASP.NET Core 企业级开发架构简介及框架汇总 (转载)

    ASP.NET Core 企业开发架构概述 企业开发框架包括垂直方向架构和水平方向架构.垂直方向架构是指一个应用程序的由下到上叠加多层的架构,同时这样的程序又叫整体式程序.水平方向架构是指将大应用分成 ...

  7. js图片轮播效果常见的产品无缝轮播

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  8. 推荐一个高大上的网易云音乐命令行播放工具:musicbox

    网易云音乐上有很多适合程序猿的歌单,但是今天文章介绍的不是这些适合程序员工作时听的歌,而是一个用Python开发的开源播放器,专门适用于网易云音乐的播放.这个播放器的名称为MusicBox, 特色是用 ...

  9. SOE 第五章

    SEO第五章 本次课目标: 1.  掌握代码优化 2.  掌握内链优化 一.代码优化 1)<h>标签 代表网页的标题,总共6个级别(h1-h6) 外观上显示字体的大小的修改,其中<h ...

  10. linux 隐藏进程

    1.首先推荐一个后门程序https://github.com/f0rb1dd3n/Reptile 具体可以了解一下功能非常强大. 2.源码如下 root@ubuntu:/var/srt/libproc ...