Codeforces 451E Devu and Flowers【容斥原理+卢卡斯定理】
题意:每个箱子里有\( f[i] \)种颜色相同的花,现在要取出\( s \)朵花,问一共有多少种颜色组合
首先枚举\( 2^n \)种不满足条件的情况,对于一个不被满足的盒子,我们至少拿出\( f[i]+1 \)朵花。
然后进行容斥,不满足奇数个条件的减去,不满足偶数个条件的加上
#include<iostream>
#include<cstdio>
using namespace std;
const int N=25,mod=1e9+7;
int n;
long long s,f[N];
long long ksm(long long a,long long b)
{
long long r=1ll;
while(b)
{
if(b&1)
r=r*a%mod;
a=a*a%mod;
b>>=1;
}
return r;
}
long long C(long long a,long long b)
{
if(a<b)
return 0;
b=(b>a-b)?a-b:b;
long long u=1ll,d=1ll;
for(long long i=0;i<b;i++)
{
u=u*(a-i)%mod;
d=d*(i+1)%mod;
}
return u*ksm(d,mod-2)%mod;
}
long long lucas(long long a,long long b)
{
return !b?1:C(a%mod,b%mod)*lucas(a/mod,b/mod)%mod;
}
int main()
{
scanf("%d%I64d",&n,&s);
for(int i=1;i<=n;i++)
scanf("%I64d",&f[i]);
long long ans=0ll;
for(int i=0;i<(1<<n);i++)
{
long long t=1ll,sum=s;
for(int j=1;j<=n;j++)
if(i&(1<<(j-1)))
{
sum-=f[j]+1;
t*=-1;
}
if(sum<0)
continue;
ans+=t*lucas(sum+n-1,n-1);
}
printf("%I64d\n",(ans%mod+mod)%mod);
return 0;
}
Codeforces 451E Devu and Flowers【容斥原理+卢卡斯定理】的更多相关文章
- Codeforces 451E Devu and Flowers(容斥原理)
题目链接:Codeforces 451E Devu and Flowers 题目大意:有n个花坛.要选s支花,每一个花坛有f[i]支花.同一个花坛的花颜色同样,不同花坛的花颜色不同,问说能够有多少种组 ...
- codeforces 451E. Devu and Flowers 容斥原理+lucas
题目链接 给n个盒子, 每个盒子里面有f[i]个小球, 然后一共可以取sum个小球.问有多少种取法, 同一个盒子里的小球相同, 不同盒子的不同. 首先我们知道, n个盒子放sum个小球的方式一共有C( ...
- CodeForces - 451E Devu and Flowers (容斥+卢卡斯)
题意:有N个盒子,每个盒子里有fi 朵花,求从这N个盒子中取s朵花的方案数.两种方法不同当且仅当两种方案里至少有一个盒子取出的花的数目不同. 分析:对 有k个盒子取出的数目超过了其中的花朵数,那么此时 ...
- Codeforces 451E Devu and Flowers(组合计数)
题目地址 在WFU(不是大学简称)第二次比赛中做到了这道题.高中阶段参加过数竞的同学手算这样的题简直不能更轻松,只是套一个容斥原理公式就可以.而其实这个过程放到编程语言中来实现也没有那么的复杂,不过为 ...
- codeforces 451E Devu and Flowers
题意:有n个瓶子每个瓶子有 f[i] 支相同的颜色的花(不同瓶子颜色不同,相同瓶子花视为相同) 问要取出s支花有多少种不同方案. 思路: 如果每个瓶子的花有无穷多.那么这个问题可以转化为 s支花分到 ...
- 【BZOJ 1272】 1272: [BeiJingWc2008]Gate Of Babylon (容斥原理+卢卡斯定理)
1272: [BeiJingWc2008]Gate Of Babylon Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 254 Solved: 12 ...
- Codeforces Round #258 E Devu and Flowers --容斥原理
这题又是容斥原理,最近各种做容斥原理啊.当然,好像题解给的不是容斥原理的方法,而是用到Lucas定理好像.这里只讲容斥的做法. 题意:从n个容器中总共取s朵花出来,问有多少种情况.其中告诉你每个盒子中 ...
- CF 451E Devu and Flowers
可重集的排列数 + 容斥原理 对于 \(\{A_1 * C_1, A _2 * C_2, \cdots, A_n * C_n\}\)这样的集合来说, 设 \(N = \sum_{i = 1} ^ n ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
随机推荐
- 洛谷—— P2002 消息扩散
P2002 消息扩散 题目背景 本场比赛第一题,给个简单的吧,这 100 分先拿着. 题目描述 有n个城市,中间有单向道路连接,消息会沿着道路扩散,现在给出n个城市及其之间的道路,问至少需要在几个城市 ...
- ABP每次生成前都执行bundle设置
ABP项目每次编译mvc项目时都会执行bundle,比较耗时. 可以在项目文件(*.csproj)中发现设置了每前生成前执行的命令 <Target Name="PreBuild&quo ...
- Nexus搭建Maven私有仓库
原文:http://blog.csdn.net/rickyit/article/details/54927101 前言 Nexus Repository Manager is a Javaapplic ...
- Weblogic性能优化(图解)
分类:Weblogic (2034) (1) 若是觉得对您有一丢丢的帮助,烦请顶一下哦,激励我码出更多的帖子,^_^谢谢! 1.数据源性能优化 1.1连接池参数配置 登录weblogic控制台,占击“ ...
- CentOS 6.x Inotify+Rsync
CentOS 6.x Inotify+Rsync yum -y install lrzsz [root@rsync ~]# mount -t nfs 10.6.100.75:/volume1/pace ...
- 汉诺塔 Tower of Hanoi
假设柱子标为A,B.C.要由A搬至C,在仅仅有一个盘子时,就将它直接搬至C:当有两个盘子,就将B作为辅助柱.假设盘数超过2个.将第二个下面的盘子遮起来,就非常easy了.每次处理两个盘子,也就是:A- ...
- MySQL迁移到SQLServer
手头有个Java老项目,数据库是基于MySQL的,我们要把它迁移到SQLServer2008. 采用微软的SSMA For MySQL:迁移助手Microsoft SQL Server Migrati ...
- 一个DIV相对于另一个DIV定位
<div style="position:relative"><div style="position:absolute; top:0px; left: ...
- ubuntu中查看已安装软件包的方法
ubuntu中查看已安装软件包的方法: 方法一:在新立得软件包管理器中,打到已安装,便可以看看有多少包被安装. 如果想把这些包的信息复制到一文件里,可用下面的方法. 方法二:在终端输入 sudo dp ...
- hdu4908 & BestCoder Round #3 BestCoder Sequence(组合数学)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4908 BestCoder Sequence Time Limit: 2000/1000 MS (Jav ...