[Bzoj3631][JLOI2014]松鼠的新家 (树上前缀和)
3631: [JLOI2014]松鼠的新家
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 2350 Solved: 1212
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
Sample Output
HINT
2<= n <=300000
分析:
今天做了noip2015 day2 t3,发现这道省选题竟然是它的简化版。。。。。。。。
道理一样求树上前缀和,以第一个访问的为根,求出dfs序(每个点的st和en)和lca。
对于每一个访问的点u,和前一个点pre在前缀和数组里 +1,他们的lca -2.
这样对于除了根节点以外的所有点,他们的起始位置到结尾位置的和就为那条边经过的次数。(这个用前缀和O(n)处理,每次求一个点只用sum[en] - sum[st - 1]就可以了)。
对于每条边出现次数x,两端的点答案各加x/2,如果为奇数深度更深的那个点答案再加1
根节点最后要加一,最后位置要减1,其实比noip那道题还简单。。。。。
AC代码:
# include <iostream>
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <algorithm>
using namespace std;
const int N = 3e5 + ;
int head[N],cnt,n,lg,maxn;
int fa[N][],dep[N],vis[N];
struct Edge{
int to,next;
}edge[N << ];
void AddEdge(int u,int v){
Edge E = {v,head[u]};
edge[++cnt] = E;head[u] = cnt;
}
int st[N],en[N];
long long ans[N],sum[N];
void dfs(int u,int pre){
st[u] = ++cnt;
for(int i = head[u];i;i = edge[i].next){
int v = edge[i].to;
if(v == pre)continue;
fa[v][] = u;
dep[v] = dep[u] + ;
dfs(v,u);
}
maxn = max(maxn,dep[u]);
en[u] = cnt;
}
int lca(int x,int y){
if(dep[x] < dep[y])swap(x,y);
for(int i = lg;i >= ;i--){
if(dep[x] - ( << i) >= dep[y])x = fa[x][i];
}
for(int i = lg;i >= ;i--){
if((dep[x] - ( << i)) && fa[x][i] != fa[y][i]){
x = fa[x][i];
y = fa[y][i];
}
}
if(x != y)x = fa[x][];
return x;
}
int main(){
scanf("%d",&n);
int x,y,root;
for(int i = ;i <= n;i++){
scanf("%d",&vis[i]);
}
root = vis[];
for(int i = ;i < n;i++){
scanf("%d %d",&x,&y);
AddEdge(x,y);
AddEdge(y,x);
}
cnt = ;
dep[root] = maxn = ;
dfs(root,-);
int pre = root;
for(lg = ;( << lg) <= maxn;lg++);lg--;
for(int j = ;j <= lg;j++){
for(int i = ;i <= n;i++){
fa[i][j] = fa[fa[i][j - ]][j - ];
}
}
for(int i = ;i <= n;i++){
sum[st[vis[i]]]++;sum[st[pre]]++;
sum[st[lca(vis[i],pre)]] -= ;
pre = vis[i];
}
for(int i = ;i <= n;i++){
sum[i] += sum[i - ];
}
long long z;
for(int i = ;i <= n;i++){
z = sum[en[i]] - sum[st[i] - ];
if(z & 1LL){
ans[i]++;
}
ans[i] += z / 2LL;ans[fa[i][]] += z / 2LL;
}
ans[pre]--;ans[root]++;
for(int i = ;i <= n;i++){
printf("%lld\n",ans[i]);
}
}
[Bzoj3631][JLOI2014]松鼠的新家 (树上前缀和)的更多相关文章
- bzoj3631 [JLOI2014]松鼠的新家——树上差分
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3631 树上差分:注意路径的结尾被多算了一次,最后要减去(不能提前减). 代码如下: #inc ...
- BZOJ3631 [JLOI2014]松鼠的新家 【树上差分】
题目 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在"树"上.松鼠想 ...
- [BZOJ3631]:[JLOI2014]松鼠的新家(LCA+树上差分)
题目传送门 题目描述: 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在“树”上.松鼠想邀 ...
- BZOJ 3631: [JLOI2014]松鼠的新家 树上差分 + LCA
Description 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在“树”上.松鼠想邀 ...
- bzoj3631: [JLOI2014]松鼠的新家(树上差分)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3631 题目大意:给定含有n个顶点的树,给定走遍整棵树顺序的序列a[1],a[2],a[3 ...
- bzoj3631: [JLOI2014]松鼠的新家(LCA+差分)
题目大意:一棵树,以一定顺序走完n个点,求每个点经过多少遍 可以树链剖分,也可以直接在树上做差分序列的标记 后者打起来更舒适一点.. 具体实现: 先求x,y的lca,且dep[x]<dep[y] ...
- BZOJ3631: [JLOI2014]松鼠的新家
传送门 树上的差分优化,很简单的一道题,应该属于NOIP2015TGD2T3的子问题. //BZOJ 3631 //by Cydiater //2016.10.25 #include <iost ...
- bzoj3631[JLOI2014 松鼠的新家 倍增lca+差分
裸的树上差分+倍增lca 每次从起点到终点左闭右开,这就有一个小技巧,要找到右端点向左端点走的第一步,然后差分就好了 #include<cstdio> #include<cstrin ...
- [JLOI2014]松鼠的新家 树上差分
差分 一开始竟然想分情况讨论来差分,然后发现各自情况要分析, 就是为了解决中间节点重复计算的问题, 结果 最后一想,中间重复计算了一次,那我最后减掉不就好了么,,, 那这就是一道差分裸题了(这是唯一不 ...
随机推荐
- 里特定律 - Little's Law
里特定律(Little's Law)源自排队理论,是IT系统性能建模中最广为人知的定律. 里特定律揭示了前置时间(Lead Time).在制品数量(Work In Progress, WIP)和吞吐率 ...
- PMP项目管理学习笔记(12)——范围管理之创建工作分解结构(WBS)
创建工作分解结构过程是范围管理知识领域中最重要的过程,因为要在此过程明确所要做的全部工作 输入:收集需求和定义范围过程的输出会成为创建工作分解结构过程的输入(需求文档.组织资产过程.项目范围说明书) ...
- SQL的top 100 percent用法
sql="select top 30 * from data where title='"&title1&"' order by id desc" ...
- HttpClient 接口调用
String url = "http://127.0.0.1:8080/api"; //然后根据表名获取公司信息 HttpPost httppost = new HttpPost( ...
- 小知识~VS2012的xamarin加载失败解决
1 由于Nuget版本过低导致的,工具->扩展和更新->在线更新->对nuget程序包程序器进行升级即可 错误代码: 错误 4 错误: 缺少来自类“NuGet.Visua ...
- 什么是Entitlement
Entitlement(权限),可以想象成App里用于描述该App可以调用哪些服务的字符串.苹果的操作系统(mac os或者iOS)会通过检查这个串,决定这个应用是否可以调用相关功能.比如iCloud ...
- DROP USER - 删除一个数据库用户帐号
SYNOPSIS DROP USER name DESCRIPTION 描述 DROP USER 从数据库中删除指定的用户. 它不删除数据库里此用户所有的表,视图或其他对象. 如果该用户拥有任何数据库 ...
- uva12265 Selling Land
见紫书.(c,h)的更新策略://前面的高度为0了,直接插入因为ans==-c+h,c大,h还小,那么肯定不是最优左上角,更新新加入列的列//新的一列高度最小,就删掉了其他的,只留这个高度从上到下,从 ...
- 错误的语法:"create view必须是批处理中仅有的语句"
编写脚本提示: 错误的语法:"create view必须是批处理中仅有的语句" FROM sys.views WHERE name = 'v_CS_UserRoleNames' ) ...
- 核心动画中的几种layer
第10章其他有用的层 免责申明(必读!):本博客提供的所有教程的翻译原稿均来自于互联网,仅供学习交流之用,切勿进行商业传播.同时,转载时不要移除本申明.如产生任何纠纷,均与本博客所有人.发表该翻译稿之 ...