题目

  https://www.nowcoder.com/acm/contest/4/B
题意

  有n条南北流向的河并列排着,水流速度是v,现在你需要从西岸游到东岸,总共T个时间,你的游泳速度是u,问东岸的上岸点和西岸的下水点之间距离最大是多少?

分析

  其实就是求南北方向位移的最大值

  如果给定在一条河里的游泳时间,那么当然可以算出在这条河里的位移最大值

  具体的对于第i条河来说,将游泳速度u分成水平方向的$x$和竖直方向的$\sqrt{u^2-x^2}$

  那么容易整理出最大位移$f_i(t)=vt+\sqrt{u^2t^2-w_i^2}$

  这个问题最难的就是时间分配,即如何将T分配成$t_1,t_2,..,t_n$满足$t_1+t_2+...+t_n=T$,并且使得$S(t_1,t_2,..,t_n)=f_1(t_1)+f_2(t_2)+..+f_n(t_n)$最大

  这是一个多元函数求极值的问题,考虑拉格朗日乘数法

  构造拉格朗日函数$L(t_1,t_2,..,t_n,\lambda)=f_1(t_1)+f_2(t_2)+..+f_n(t_n)+\phi(t_1,t_2,..,t_n)$,其中$\phi(t_1,t_2,..,t_n)=t_1+t_2+...+t_n-T$

  只需要求这个L的各个偏导,令其为0就行了

  于是我们得到了重要的结论——${f_1}'(t_1)={f_2}'(t_2)=...={f_n}'(t_n)$

  我们可以去二分这个导数值mid,然后去反解$t_i$

  根据$\sum {t_i}$和$T$的大小来改变mid的值

  注意到能二分导数值反解$t_i$的情况当且仅当$f_i$是单调的,但${f_1}'(t_1)={f_2}'(t_2)=...={f_n}'(t_n)$这个性质却和函数表达式无关

Wannafly模拟赛2 B river(拉格朗日乘数法)的更多相关文章

  1. [Math & Algorithm] 拉格朗日乘数法

    拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程.新学 ...

  2. 《University Calculus》-chaper12-多元函数-拉格朗日乘数法

    求解条件极值的方法:拉格朗日乘数法 基于对多元函数极值方法的了解,再具体的问题中我们发现这样一个问题,在求解f(x,y,z)的极值的时候,我们需要极值点落在g(x,y,z)上这种对极值点有约束条件,通 ...

  3. bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)

    题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...

  4. ML(附录4)——拉格朗日乘数法

    基本的拉格朗日乘子法(又称为拉格朗日乘数法),就是求函数 f(x1,x2,...) 在 g(x1,x2,...)=C 的约束条件下的极值的方法.其主要思想是引入一个新的参数 λ (即拉格朗日乘子),将 ...

  5. CodeChef TWOROADS(计算几何+拉格朗日乘数法)

    题面 传送门 简要题意:给出\(n\)个点,请求出两条直线,并最小化每个点到离它最近的那条直线的距离的平方和,\(n\leq 100\) orz Shinbokuow 前置芝士 给出\(n\)个点,请 ...

  6. BZOJ3775: 点和直线(计算几何+拉格朗日乘数法)

    题面 传送门 题解 劲啊-- 没有和\(Claris\)一样推,用了类似于\(Shinbokuow\)推已知点求最短直线的方法,结果\(WA\)了好几个小时,拿\(Claris\)代码拍了几个小时都没 ...

  7. BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】

    题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...

  8. 拉格朗日乘数法 和 KTT条件

    预备知识 令 \(X\) 表示一个变量组(向量) \((x_1, x_2, \cdots, x_n)\) 考虑一个处处可导的函数 \(f(X)\), 为了方便描述, 这里以二元函数为例 对于微分, 考 ...

  9. CodeForces - 813C The Tag Game(拉格朗日乘数法,限制条件求最值)

    [传送门]http://codeforces.com/problemset/problem/813/C [题意]给定整数a,b,c,s,求使得  xa yb zc值最大的实数 x,y,z , 其中x ...

随机推荐

  1. win驱动安装记录

    工具:devcon64.exe 安装/更新/删除等记录:c:\windows\inf\setupapi.dev.log

  2. docker存储管理

    Docker 镜像的元数据 repository元数据 repository在本地的持久化文件存放于/var/lib/docker/image/overlay2/repositories.json中 ...

  3. easyui前端框架01

    一. 三大前端框架的特点 1.easyui=jquery+html4 优点:快速开发.功能齐全 .免费 缺点:不好看.不支持相应式开发 2.bootstrap=jquery+html5 优点: 功能强 ...

  4. django--基础操作

    Django基础操作 django常用命令 创建django项目 django-admin startproject mysite 创建项目完成以后,文件目录结构为: 修改settings文件内容 A ...

  5. 性能优化 java 24 次阅读 · 读完需要 15 分钟 0

    摘要: 技术传播的价值,不仅仅体现在通过商业化产品和开源项目来缩短我们构建应用的路径,加速业务的上线速率,也会体现在优秀程序员在工作效率提升.产品性能优化和用户体验改善等小技巧方面的分享,以提高我们的 ...

  6. @ApiParam @RequestParam @PathVariable 用法

    文章来源:https://www.cnblogs.com/hello-tl/p/9204279.html 1.@ApiParam ,是注解api的参数 ,也就是用于swagger提供开发者文档 ,文档 ...

  7. pytest以类形式的测试用例

    from __future__ import print_function#pytest以类形式的测试用例class TestClass: @classmethod def setup_class(c ...

  8. 【BZOJ 1222】 [HNOI2001] 产品加工(DP)

    Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机 ...

  9. 单机安装hadoop集群

    一 .安装前准备 1.VMware虚拟内容 2.Linux系统 (CentOS-6.9-min) 镜像文件http://vault.centos.org/ 3.jdk 1.8 rpm或bin文件 ht ...

  10. luogu4093 [HEOI2016/TJOI2016]序列

    因为一个变化只会变化一个值,所以 \(dp[i]=max(dp[j])+1,j<i,maxval_j \leq a[i], a[j] \leq minval_i\) 发现跟二维数点问题挺像,树状 ...