大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点。路径的权就是数的和。输出一条权值最大的路径方案

思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇数。显然能够遍历。要是有一个偶数。能够绘图发现,把图染成二分图后,(1,1)为黑色,总能有一种构造方式能够仅仅绕过不论什么一个白色的点。然后再遍历其它点。而绕过黑色的点必定还要绕过两个白色点才干遍历所有点,这是绘图发现的。所以找一个权值最小的白色点绕过就能够了,

题解给出了证明:

如果n,mn,m都为偶数,那么讲棋盘黑白染色。如果(1,1)(1,1)和(n,m)(n,m)都为黑色,那么这条路径中黑格个数比白格个数多11,而棋盘中黑白格子个数同样。所以必定有一个白格不会被经过。所以选择白格中权值最小的不经过。


//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <string>
#include <vector>
#include <cstdio>
#include <ctime>
#include <bitset>
#include <algorithm>
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define reveach(i, v) for (__typeof((v).rbegin()) i = (v).rbegin(); i != (v).rend(); ++ i)
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
#define rep(i,n) for ( int i=0; i< int(n); i++ )
using namespace std;
typedef long long ll;
#define X first
#define Y second
typedef pair<int,int> pii; template <class T>
inline bool RD(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void PT(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) PT(x / 10);
putchar(x % 10 + '0');
} const int N = 123;
int mp[N][N];
int main(){ int n,m;
while(~scanf("%d%d",&n,&m)){
int sum = 0;
memset(mp,0,sizeof(mp));
REP(i,n) REP(j,m) RD(mp[i][j]), sum += mp[i][j];
if( (n&1)||(m&1) ){
PT(sum);puts("");
if( n&1 ){
REP(r,n){
if( r&1 ) REP(i,m-1) putchar('R');
else REP(i,m-1) putchar('L');
if( r != n) putchar('D');
}
}else{
REP(c,m){
if( c&1 ) REP(i,n-1) putchar('D');
else REP(i,n-1) putchar('U');
if( c != m) putchar('R');
}
}
}else{
int minn = 1LL<<30;
int sx,sy;
REP(x,n) REP(y,m){
if( (x+y)&1 ){
if( mp[x][y] < minn) minn = mp[x][y], sx = x,sy = y;
}
}
printf("%d\n",sum-minn);
bool ok = 0;
REP(y,m){
if( (y-1)/2+1 == (sy-1)/2+1){
ok = 1;
bool rgt = 1;
REP(x,n){
if( x == sx) {
if( x != n) putchar('D');
continue;
}
if( rgt) putchar('R');
else putchar('L');
if( x != n) putchar('D');
rgt = !rgt;
}
y++;
}else{
if( ((y&1)&&ok==0) || ((y%2 == 0)&&ok) ){
REP(x,n-1) putchar('D');
}else{
REP(x,n-1) putchar('U');
}
}
if( y != m) putchar('R');
}
}
puts("");
}
}

Travelling Salesman Problem

Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 864    Accepted Submission(s): 313

Special Judge

Problem Description
Teacher Mai is in a maze with n rows
and m columns.
There is a non-negative number in each cell. Teacher Mai wants to walk from the top left corner (1,1) to
the bottom right corner (n,m).
He can choose one direction and walk to this adjacent cell. However, he can't go out of the maze, and he can't visit a cell more than once.



Teacher Mai wants to maximize the sum of numbers in his path. And you need to print this path.
 
Input
There are multiple test cases.



For each test case, the first line contains two numbers n,m(1≤n,m≤100,n∗m≥2).



In following n lines,
each line contains m numbers.
The j-th
number in the i-th
line means the number in the cell (i,j).
Every number in the cell is not more than 104.
 
Output
For each test case, in the first line, you should print the maximum sum.



In the next line you should print a string consisting of "L","R","U" and "D", which represents the path you find. If you are in the cell (x,y),
"L" means you walk to cell (x,y−1),
"R" means you walk to cell (x,y+1),
"U" means you walk to cell (x−1,y),
"D" means you walk to cell (x+1,y).
 
Sample Input
3 3
2 3 3
3 3 3
3 3 2
 
Sample Output
25
RRDLLDRR
 
Author
xudyh
 
Source
 
Recommend
wange2014

HDU 5402 Travelling Salesman Problem (构造)(好题)的更多相关文章

  1. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  2. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  3. HDU 5402 Travelling Salesman Problem(棋盘染色 构造 多校啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5402 Problem Description Teacher Mai is in a maze wit ...

  4. hdu 5402 Travelling Salesman Problem(大模拟)

    Problem Description Teacher Mai ,) to the bottom right corner (n,m). He can choose one direction and ...

  5. HDU 5402 Travelling Salesman Problem(多校9 模拟)

    题目链接:pid=5402">http://acm.hdu.edu.cn/showproblem.php?pid=5402 题意:给出一个n×m的矩阵,位置(i.j)有一个非负权值. ...

  6. HDU 5402 : Travelling Salesman Problem

    题目大意:n*m的格子,从左上角走到右下角,每个格子只能走一遍,每个格子上有一个非负数,要让途径的数字和最大,最后要输出路径 思路:显然茹果n,m有一个是奇数的话所有格子的数字都能被我吃到,如果都是偶 ...

  7. hdu 5402 Travelling Salesman Problem (技巧,未写完)

    题意:给一个n*m的矩阵,每个格子中有一个数字,每个格子仅可以走一次,问从(1,1)走到(n,m) 的路径点权之和. 思路: 想了挺久,就是有个问题不能短时间证明,所以不敢下手. 显然只要n和m其中一 ...

  8. HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  9. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

随机推荐

  1. 查看外网IP

    同一个网络,登录不同网站/APP, 显示的登录IP可能不一样. 输入ip138.com 得到外网IP: 输入:http://www.net.cn/static/customercare/yourip. ...

  2. js 给url添加时间戳 解决浏览器缓存

    //解决浏览器缓存 function timestamp(url){      //  var getTimestamp=Math.random(); var getTimestamp=new Dat ...

  3. -- HTML标记大全参考手册[推荐]

    --  HTML标记大全参考手册[推荐]总类(所有HTML文件都有的) 文件类型 <HTML></HTML> (放在档案的开头与结尾) 文件主题 <TITLE>&l ...

  4. thinkphp5生成二维码

    1.运用composer下载拓展到vendor下 composer require aferrandini/phpqrcode 2.common.php 里面写生成二维码函数 <?php // ...

  5. 常见的Redis问题?

    Redis的那些最常见面试问题[转] 1.什么是redis? Redis 是一个基于内存的高性能key-value数据库. 2.Reids的特点 Redis本质上是一个Key-Value类型的内存数据 ...

  6. C语言标准库函数总结

    一.动态内存分配1.malloc  原型:extern void *malloc(unsigned int num_bytes);  用法:#include <alloc.h>  功能:分 ...

  7. 在rubymine中集成heroku插件

    先安装heroku,参见http://www.cnblogs.com/jecyhw/p/4906990.html Heroku安装之后,就自动安装上git,目录为C:\Program Files (x ...

  8. (九)python3 列表生成式

    列表生成式即 List Comprehensions,是 Python 内置的非常简单却强大的可以用来创建 list 的生成式. 要生成 list [1, 2, 3, 4, 5, 6, 7, 8, 9 ...

  9. Python中的列表(2)

    一.从列表中删除元素 使用del 语句删除. books = ['Pride and Prejudice','Jane Eyre','The Catcher in the Rye'] print(bo ...

  10. Spring核心技术(七)——Spring容器的扩展

    本文将讨论如何关于在Spring生命周期中扩展Spring中的Bean功能. 容器的扩展 通常来说,开发者不需要通过继承ApplicationContext来实现自己的子类扩展功能.但是Spring ...