D. Puzzles
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Barney lives in country USC (United States of Charzeh). USC has n cities numbered from 1 through n and n - 1 roads between them. Cities and roads of USC form a rooted tree (Barney's not sure why it is rooted). Root of the tree is the city number 1. Thus if one will start his journey from city 1, he can visit any city he wants by following roads.

Some girl has stolen Barney's heart, and Barney wants to find her. He starts looking for in the root of the tree and (since he is Barney Stinson not a random guy), he uses a random DFS to search in the cities. A pseudo code of this algorithm is as follows:

let starting_time be an array of length n
current_time = 0
dfs(v):
current_time = current_time + 1
starting_time[v] = current_time
shuffle children[v] randomly (each permutation with equal possibility)
// children[v] is vector of children cities of city v
for u in children[v]:
dfs(u)

As told before, Barney will start his journey in the root of the tree (equivalent to call dfs(1)).

Now Barney needs to pack a backpack and so he wants to know more about his upcoming journey: for every city i, Barney wants to know the expected value of starting_time[i]. He's a friend of Jon Snow and knows nothing, that's why he asked for your help.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 105) — the number of cities in USC.

The second line contains n - 1 integers p2, p3, ..., pn (1 ≤ pi < i), where pi is the number of the parent city of city number i in the tree, meaning there is a road between cities numbered pi and i in USC.

Output

In the first and only line of output print n numbers, where i-th number is the expected value of starting_time[i].

Your answer for each city will be considered correct if its absolute or relative error does not exceed 10 - 6.

Examples
input
7
1 2 1 1 4 4
output
1.0 4.0 5.0 3.5 4.5 5.0 5.0 
input
12
1 1 2 2 4 4 3 3 1 10 8
output
1.0 5.0 5.5 6.5 7.5 8.0 8.0 7.0 7.5 6.5 7.5 8.0 

题意:求到达点1~n每个点的时间的期望。

对于一个点 to 我们可以知道有两种方案到达这个点   (1)从父亲节点直接到达,这部分的概率为1(2)经过了不含to子树的那些点后到达to的父亲节点后再到达to,走这部分的概率为0.5

结合样例1

那么 可以得到 递推方程 ans[to]=ans[i]+1+(ans[i]-ans[to]-1)*0.5

自上而下递推就行了。

/* ***********************************************
Author :guanjun
Created Time :2016/7/24 16:25:35
File Name :1.cpp
************************************************ */
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <iomanip>
#include <list>
#include <deque>
#include <stack>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 100010
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << ;
const double eps=1e-;
using namespace std;
priority_queue<int,vector<int>,greater<int> >pq;
struct Node{
int x,y;
};
struct cmp{
bool operator()(Node a,Node b){
if(a.x==b.x) return a.y> b.y;
return a.x>b.x;
}
}; bool cmp(int a,int b){
return a>b;
}
vector<int>v[maxn];
int sz[maxn];
double ans[maxn];
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
int n,x;
while(cin>>n){
for(int i=;i<=n;i++){
scanf("%d",&x);
v[x].push_back(i);
}
for(int i=n;i>=;i--){
sz[i]=;//由于题目中建树的特点 我们可以这样求sz[i] dfs一下也可以
for(int j=;j<v[i].size();j++){
int to=v[i][j];
sz[i]+=sz[to];
}
}
//cout<<sz[1]<<endl;
int i=;i<=n;i+
ans[]=1.0;
for(int i=;i<=n;i++){
for(int j=;j<v[i].size();j++){
int to=v[i][j];
ans[to]=ans[i]++(sz[i]--sz[to])*0.5;
}
}
for(int i=;i<=n;i++){
printf("%.7f ",ans[i]);
}
}
return ;
}

Codeforces Round #362 (Div. 2) D. Puzzles的更多相关文章

  1. 【转载】【树形DP】【数学期望】Codeforces Round #362 (Div. 2) D.Puzzles

    期望计算的套路: 1.定义:算出所有测试值的和,除以测试次数. 2.定义:算出所有值出现的概率与其乘积之和. 3.用前一步的期望,加上两者的期望距离,递推出来. 题意: 一个树,dfs遍历子树的顺序是 ...

  2. D. Puzzles(Codeforces Round #362 (Div. 2))

    D. Puzzles Barney lives in country USC (United States of Charzeh). USC has n cities numbered from 1 ...

  3. Codeforces Round #362 (Div. 2) C. Lorenzo Von Matterhorn (类似LCA)

    题目链接:http://codeforces.com/problemset/problem/697/D 给你一个有规则的二叉树,大概有1e18个点. 有两种操作:1操作是将u到v上的路径加上w,2操作 ...

  4. #map+LCA# Codeforces Round #362 (Div. 2)-C. Lorenzo Von Matterhorn

    2018-03-16 http://codeforces.com/problemset/problem/697/C C. Lorenzo Von Matterhorn time limit per t ...

  5. Codeforces Round #196 (Div. 2) A. Puzzles 水题

    A. Puzzles Time Limit: 2 Sec  Memory Limit: 60 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  6. Codeforces Round #362 (Div. 2) A.B.C

    A. Pineapple Incident time limit per test 1 second memory limit per test 256 megabytes input standar ...

  7. Codeforces Round #362 (Div. 2)->B. Barnicle

    B. Barnicle time limit per test 1 second memory limit per test 256 megabytes input standard input ou ...

  8. Codeforces Round #362 (Div. 2)->A. Pineapple Incident

    A. Pineapple Incident time limit per test 1 second memory limit per test 256 megabytes input standar ...

  9. Codeforces Round #362 (Div. 2) B 模拟

    B. Barnicle time limit per test 1 second memory limit per test 256 megabytes input standard input ou ...

随机推荐

  1. Python使用Flask框架,结合Highchart,自定义图表样式主题

    参考链接:https://www.highcharts.com.cn/docs/themes 1.使用官方提供的主题js文件,只需要在 highcharts.js 后引入对应的文件即可,不用修改原有的 ...

  2. eclipse之版本代号

  3. shell脚本、if语句、for循环语句

    shell在shell脚本中,如果用户不输入东西,系统不自动退出,this is a bug!文件测试语句:-d -f -r -w -x -e逻辑测试语句:“&&”与(同时满足) “| ...

  4. 80-Force Index,强力指标.(2015.7.1)

    Force Index 强力指标 Index,强力指标.(2015.7.1)" title="80-Force Index,强力指标.(2015.7.1)"> 观井 ...

  5. MFC对话框使用CPrintDialog实现打印,指定打印机、后台打印

    推荐下 不错. 对话框打印,网上一搜一大堆,基本分2类: A类: CPrintDialog.DoModal,然后在模态对话框里选打印机.打印配置: B类:GetPrinterDeviceDefault ...

  6. 【04】< meta > 元素

    < meta > 元素 概要 标签提供关于HTML文档的元数据.元数据不会显示在页面上,但是对于机器是可读的.它可用于浏览器(如何显示内容或重新加载页面),搜索引擎(关键词),或其他 we ...

  7. Linux备份-删除指定日期内文件

    #!/usr/bin/env bash source /etc/profile echo " *************** start filter ***************  &q ...

  8. HDU1755

    这道题直接暴力枚举复杂度为 n!*m 但是k<100 , 所以我们可以通过取模用dp[i][j] 表示k=i 时,-x取模k为j的最小值 #include <cstdio> #inc ...

  9. Delphi第三方控件安装方式

    由于组件提供的方式不同,所以安装的方法也是不一样的,下面就目前常见的各种形式的组      件的安装方法介绍一下.             1只有一个DCU文件的组件.DCU文件是编译好的单元文件,这 ...

  10. Java 添加、更新和移除PDF超链接

    简介 PDF超链接用一个简单的链接包含了大量的信息,满足了人们在不占用太多空间的情况下渲染外部信息的需求.下面将介绍通过Java 在PDF中添加.更新和移除超链接. (一)工具使用: Free Spi ...