#3083. 「GXOI / GZOI2019」与或和

题目大意

给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和、\(OR(|)\)之和。

数据范围

\(1\le N\le 10^3\),\(val_{(i,j)} \le 2^{31}-1\)。

题解

一眼题。

对于这种位运算的题,题都不用看完先想拆位,拆位可行那就拆,拆位不可行就不拆。

这里指的拆位可不可行具体指的是答案满不满足对于拆位之后的可加性。

发现这个题所求的是个和,那就果断拆开。

这样的话问题就变成了给定一个\(01\)矩阵求\(AND\)和(\(OR\)同理)。

发现只要是子矩阵中有\(0\)就是\(0\)。

这种存在即可的式子最\(gay\)了。

绝大多数这种存在即可的式子都会依照“正难则反”变成“不存在即可”。

故此我们只需要求全\(1\)子矩阵个数。

这就很好求了,给定一个边长最多是\(1000\)的正方形\(01\)矩阵,问全\(1\)子矩阵个数。

每一行拿单调栈扫一扫就好了。

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define N 1010
int ori[N][N],a[N][N],bfr_up[N][N],bfr[N],aft[N],q[N],top;
int bin[31];
const int mod = 1000000007 ;
const int inv4 = 250000002 ;
char *p1,*p2,buf[1000000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++)
int rd() {int x=0; char c=nc(); while(c<48) c=nc(); while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return x;}
int main()
{
bin[0]=1; for(int i=1;i<=30;i++) bin[i]=bin[i-1]<<1;
int n=rd();
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) ori[i][j]=rd();
int ans1=0,ans2=0;
for(int bt=0;bt<=30;bt++)
{
int now1=0,now2=0;
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++)
{
a[i][j]=(ori[i][j]>>bt)&1;
if(a[i][j]) bfr_up[i][j]=bfr_up[i-1][j]+1; else bfr_up[i][j]=0;
}
for(int i=1;i<=n;i++)
{
top=0;
for(int j=n;j;j--)
{
while(top&&bfr_up[i][j]<bfr_up[i][q[top]]) bfr[q[top]]=j,top--;
q[++top]=j;
}
while(top) bfr[q[top]]=0,top--;
top=0;
for(int j=1;j<=n;j++)
{
while(top&&bfr_up[i][j]<=bfr_up[i][q[top]]) aft[q[top]]=j,top--;
q[++top]=j;
}
while(top) aft[q[top]]=n+1,top--;
for(int j=1;j<=n;j++) (now1+=(ll)bfr_up[i][j]*(aft[j]-j)*(j-bfr[j])%mod)%=mod;
}
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++)
{
a[i][j]^=1;
if(a[i][j]) bfr_up[i][j]=bfr_up[i-1][j]+1; else bfr_up[i][j]=0;
}
for(int i=1;i<=n;i++)
{
top=0;
for(int j=n;j;j--)
{
while(top&&bfr_up[i][j]<bfr_up[i][q[top]]) bfr[q[top]]=j,top--;
q[++top]=j;
}
while(top) bfr[q[top]]=0,top--;
top=0;
for(int j=1;j<=n;j++)
{
while(top&&bfr_up[i][j]<=bfr_up[i][q[top]]) aft[q[top]]=j,top--;
q[++top]=j;
}
while(top) aft[q[top]]=n+1,top--;
for(int j=1;j<=n;j++) (now2+=(ll)bfr_up[i][j]*(aft[j]-j)*(j-bfr[j])%mod)%=mod;
}
now1=(ll)now1*bin[bt]%mod;
now2=(ll)now2*bin[bt]%mod;
(ans1+=now1)%=mod;
(ans2+=((ll)n * n * (n + 1) * (n + 1) % mod * inv4 % mod * bin[bt] % mod-now2 + mod)%mod)%=mod;
}
printf("%d %d\n",ans1,ans2);
return 0;
}

小结

模拟赛中被卡常了,\(LOJ\)也被卡常了。

这种取\(mod\)的题少取两次\(mod\)就好了。

LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位的更多相关文章

  1. LOJ#3083. 「GXOI / GZOI2019」与或和(单调栈)

    题面 传送门 题解 按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵 ...

  2. 「洛谷5300」「GXOI/GZOI2019」与或和【单调栈+二进制转化】

    题目链接 [洛谷传送门] 题解 按位处理. 把每一位对应的图都处理出来 然后单调栈处理一下就好了. \(and\)操作处理全\(1\). \(or\)操作处理全\(0\). 代码 #include & ...

  3. 【LOJ】#3083. 「GXOI / GZOI2019」与或和

    LOJ#3083. 「GXOI / GZOI2019」与或和 显然是先拆位,AND的答案是所有数字为1的子矩阵的个数 OR是所有的子矩阵个数减去所有数字为0的子矩阵的个数 子矩阵怎么求可以记录每个位置 ...

  4. Loj #3085. 「GXOI / GZOI2019」特技飞行

    Loj #3085. 「GXOI / GZOI2019」特技飞行 题目描述 公元 \(9012\) 年,Z 市的航空基地计划举行一场特技飞行表演.表演的场地可以看作一个二维平面直角坐标系,其中横坐标代 ...

  5. LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)

    题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...

  6. LOJ#3087. 「GXOI / GZOI2019」旅行者(最短路)

    题面 传送门 题解 以所有的感兴趣的城市为起点,我们正着和反着各跑一边多源最短路.记\(c_{0/1,i}\)分别表示正图/反图中离\(i\)最近的起点,那么对于每条边\((u,v,w)\),如果\( ...

  7. LOJ#3086. 「GXOI / GZOI2019」逼死强迫症(矩阵快速幂)

    题面 传送门 题解 先考虑全都放\(1\times 2\)的方块的方案,设防\(i\)列的方案数为\(g_i\),容易推出\(g_i=g_{i-1}+g_{i-2}\),边界条件为\(g_0=g_1= ...

  8. LOJ#3085. 「GXOI / GZOI2019」特技飞行(KDtree+坐标系变换)

    题面 传送门 前置芝士 请确定您会曼哈顿距离和切比雪夫距离之间的转换,以及\(KDtree\)对切比雪夫距离的操作 题解 我们发现\(AB\)和\(C\)没有任何关系,所以关于\(C\)可以直接暴力数 ...

  9. LOJ#3084. 「GXOI / GZOI2019」宝牌一大堆(递推)

    题面 传送门 题解 为什么又是麻将啊啊啊!而且还是我最讨厌的爆搜类\(dp\)-- 首先国士无双和七对子是可以直接搞掉的,关键是剩下的,可以看成\(1\)个雀头加\(4\)个杠子或面子 直接\(dp\ ...

随机推荐

  1. Django-C003-视图

    此文章完成度[5%]留着以后忘记的回顾.多写多练多思考,我会努力写出有意思的demo,如果知识点有错误.误导,欢迎大家在评论处写下你的感想或者纠错. 在这个章节中,我们也一样需要练习过往已经掌握的技能 ...

  2. javaEE(16)_Servlet监听器

    一.监听器原理 1.监听器就是一个实现特定接口的普通java程序,这个程序专门用于监听一个java对象的方法调用或属性改变,当被监听对象发生上述事件后,监听器某个方法将立即被执行. 2.监听器典型案例 ...

  3. Vnc自动登录器(VncManager)v1.3-多国语言绿色版-Release1-20190215

    Vnc自动登录器 v1.3 (20190215) By: ybmj@vip.163.com , https://www.cnblogs.com/ybmj/ 下载地址:http://bbs.wuyou. ...

  4. Comet OJ 热身赛-principal

    这题的话,我们分析一下,入栈的操作是: 栈空 栈顶元素和当前操作元素不属于同一类括号 栈顶元素和当前操作元素属于同一类括号,但是并不是左括号在前,右括号在后 上面三个条件有任意一个满足都应该入栈,如果 ...

  5. 详解css媒体查询

    简介 媒体查询(Media Queries)早在在css2时代就存在,经过css3的洗礼后变得更加强大bootstrap的响应式特性就是从此而来的. 简单的来讲媒体查询是一种用于修饰css何时起作用的 ...

  6. 常用模块之configpaser与shutil

    configparser模块 定义:configparser翻译为配置解析,即它是用来解析配置文件的 配置文件:用于编写程序的配置信息的文件 配置文件编写格式 配置文件中只允许出现两种类型的数据 se ...

  7. Lecture1 实验过程模型

    Part 1 基本概念 因变量:待检验理论重点关注的,受多个变量影响的变量.(实际考察的,结果) 自变量:影响因变量变化的变量. 因子:重点关注的自变量. 控制变量(control variables ...

  8. ARM-Linux基本开发步骤

    拿到一块YC2440(s3c2440)的开发板,经过几天的学习,我对arm-linux系统开发步骤有了一些认识.就以开发这个开发板为例,arm-linux开发工作大概分4个部分 1.       硬件 ...

  9. jquery 元素文本取值/赋值

    select元素选中option值 jq $("#select1 option:selected").text(); $("select id或class option: ...

  10. Python第三方库之openpyxl(11)

    Python第三方库之openpyxl(11) Stock Charts(股票图) 在工作表上按特定顺序排列的列或行中的数据可以在股票图表中绘制.正如其名称所暗示的,股票图表通常被用来说明股价的波动. ...