LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位
#3083. 「GXOI / GZOI2019」与或和
题目大意
给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和、\(OR(|)\)之和。
数据范围
\(1\le N\le 10^3\),\(val_{(i,j)} \le 2^{31}-1\)。
题解
一眼题。
对于这种位运算的题,题都不用看完先想拆位,拆位可行那就拆,拆位不可行就不拆。
这里指的拆位可不可行具体指的是答案满不满足对于拆位之后的可加性。
发现这个题所求的是个和,那就果断拆开。
这样的话问题就变成了给定一个\(01\)矩阵求\(AND\)和(\(OR\)同理)。
发现只要是子矩阵中有\(0\)就是\(0\)。
这种存在即可的式子最\(gay\)了。
绝大多数这种存在即可的式子都会依照“正难则反”变成“不存在即可”。
故此我们只需要求全\(1\)子矩阵个数。
这就很好求了,给定一个边长最多是\(1000\)的正方形\(01\)矩阵,问全\(1\)子矩阵个数。
每一行拿单调栈扫一扫就好了。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define N 1010
int ori[N][N],a[N][N],bfr_up[N][N],bfr[N],aft[N],q[N],top;
int bin[31];
const int mod = 1000000007 ;
const int inv4 = 250000002 ;
char *p1,*p2,buf[1000000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++)
int rd() {int x=0; char c=nc(); while(c<48) c=nc(); while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return x;}
int main()
{
bin[0]=1; for(int i=1;i<=30;i++) bin[i]=bin[i-1]<<1;
int n=rd();
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) ori[i][j]=rd();
int ans1=0,ans2=0;
for(int bt=0;bt<=30;bt++)
{
int now1=0,now2=0;
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++)
{
a[i][j]=(ori[i][j]>>bt)&1;
if(a[i][j]) bfr_up[i][j]=bfr_up[i-1][j]+1; else bfr_up[i][j]=0;
}
for(int i=1;i<=n;i++)
{
top=0;
for(int j=n;j;j--)
{
while(top&&bfr_up[i][j]<bfr_up[i][q[top]]) bfr[q[top]]=j,top--;
q[++top]=j;
}
while(top) bfr[q[top]]=0,top--;
top=0;
for(int j=1;j<=n;j++)
{
while(top&&bfr_up[i][j]<=bfr_up[i][q[top]]) aft[q[top]]=j,top--;
q[++top]=j;
}
while(top) aft[q[top]]=n+1,top--;
for(int j=1;j<=n;j++) (now1+=(ll)bfr_up[i][j]*(aft[j]-j)*(j-bfr[j])%mod)%=mod;
}
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++)
{
a[i][j]^=1;
if(a[i][j]) bfr_up[i][j]=bfr_up[i-1][j]+1; else bfr_up[i][j]=0;
}
for(int i=1;i<=n;i++)
{
top=0;
for(int j=n;j;j--)
{
while(top&&bfr_up[i][j]<bfr_up[i][q[top]]) bfr[q[top]]=j,top--;
q[++top]=j;
}
while(top) bfr[q[top]]=0,top--;
top=0;
for(int j=1;j<=n;j++)
{
while(top&&bfr_up[i][j]<=bfr_up[i][q[top]]) aft[q[top]]=j,top--;
q[++top]=j;
}
while(top) aft[q[top]]=n+1,top--;
for(int j=1;j<=n;j++) (now2+=(ll)bfr_up[i][j]*(aft[j]-j)*(j-bfr[j])%mod)%=mod;
}
now1=(ll)now1*bin[bt]%mod;
now2=(ll)now2*bin[bt]%mod;
(ans1+=now1)%=mod;
(ans2+=((ll)n * n * (n + 1) * (n + 1) % mod * inv4 % mod * bin[bt] % mod-now2 + mod)%mod)%=mod;
}
printf("%d %d\n",ans1,ans2);
return 0;
}
小结
模拟赛中被卡常了,\(LOJ\)也被卡常了。
这种取\(mod\)的题少取两次\(mod\)就好了。
LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位的更多相关文章
- LOJ#3083. 「GXOI / GZOI2019」与或和(单调栈)
题面 传送门 题解 按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵 ...
- 「洛谷5300」「GXOI/GZOI2019」与或和【单调栈+二进制转化】
题目链接 [洛谷传送门] 题解 按位处理. 把每一位对应的图都处理出来 然后单调栈处理一下就好了. \(and\)操作处理全\(1\). \(or\)操作处理全\(0\). 代码 #include & ...
- 【LOJ】#3083. 「GXOI / GZOI2019」与或和
LOJ#3083. 「GXOI / GZOI2019」与或和 显然是先拆位,AND的答案是所有数字为1的子矩阵的个数 OR是所有的子矩阵个数减去所有数字为0的子矩阵的个数 子矩阵怎么求可以记录每个位置 ...
- Loj #3085. 「GXOI / GZOI2019」特技飞行
Loj #3085. 「GXOI / GZOI2019」特技飞行 题目描述 公元 \(9012\) 年,Z 市的航空基地计划举行一场特技飞行表演.表演的场地可以看作一个二维平面直角坐标系,其中横坐标代 ...
- LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)
题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...
- LOJ#3087. 「GXOI / GZOI2019」旅行者(最短路)
题面 传送门 题解 以所有的感兴趣的城市为起点,我们正着和反着各跑一边多源最短路.记\(c_{0/1,i}\)分别表示正图/反图中离\(i\)最近的起点,那么对于每条边\((u,v,w)\),如果\( ...
- LOJ#3086. 「GXOI / GZOI2019」逼死强迫症(矩阵快速幂)
题面 传送门 题解 先考虑全都放\(1\times 2\)的方块的方案,设防\(i\)列的方案数为\(g_i\),容易推出\(g_i=g_{i-1}+g_{i-2}\),边界条件为\(g_0=g_1= ...
- LOJ#3085. 「GXOI / GZOI2019」特技飞行(KDtree+坐标系变换)
题面 传送门 前置芝士 请确定您会曼哈顿距离和切比雪夫距离之间的转换,以及\(KDtree\)对切比雪夫距离的操作 题解 我们发现\(AB\)和\(C\)没有任何关系,所以关于\(C\)可以直接暴力数 ...
- LOJ#3084. 「GXOI / GZOI2019」宝牌一大堆(递推)
题面 传送门 题解 为什么又是麻将啊啊啊!而且还是我最讨厌的爆搜类\(dp\)-- 首先国士无双和七对子是可以直接搞掉的,关键是剩下的,可以看成\(1\)个雀头加\(4\)个杠子或面子 直接\(dp\ ...
随机推荐
- nodejs 设置安装包路径的取消和安装cnpm
安装cnpm: $ npm install -g cnpm --registry=https://registry.npm.taobao.org 配置nodejs的npm安装包路径: npm conf ...
- 更新portage之后 安装 certbot
运行的时候一直报如下的错误: sudo certbot 错误结果: Traceback (most recent call last): File "/usr/lib/python-exec ...
- 【dp】拔河比赛
01背包:感谢ZCK大佬 题目描述 学校举行拔河比赛,所有的人被分成了两组,每个人必须(且只能够)在其中的一组,要求两个组的人数相差不能超过1,且两个组内的所有人体重加起来尽可能地接近. 输入 输入中 ...
- 【OS_Linux】三大文本处理工具之grep命令
grep(global search regular expression(RE) and print out the line,整行搜索并打印匹配成功的行 语法:grep [选项] 搜索词 ...
- Web鼠标事件
mousedown:鼠标按下 mouseup:鼠标抬起 mousemove:鼠标移动 mouseout:在父元素上绑定该事件,当鼠标从父元素或者从子元素上离开时都会触发该事件 mouseleave:和 ...
- jquery 元素文本取值/赋值
select元素选中option值 jq $("#select1 option:selected").text(); $("select id或class option: ...
- 图论trainning-part-1 F. Highways
F. Highways Time Limit: 1000ms Memory Limit: 10000KB 64-bit integer IO format: %lld Java class ...
- 树状数组 gcd 查询 Different GCD Subarray Query
Different GCD Subarray Query Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K ( ...
- soa服务治理
SOA服务治理 文章:SOA 治理简介 文章:中小型互联网公司微服务实践-经验和教训
- 九度oj 题目1114:神奇的口袋
题目描述: 有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40.John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an.John可以从这些物品中 ...