Codeforces 735 E Ostap and Tree
Discription
Ostap already settled down in Rio de Janiero suburb and started to grow a tree in his garden. Recall that a tree is a connected undirected acyclic graph.
Ostap's tree now has n vertices. He wants to paint some vertices of the tree black such that from any vertex u there is at least one black vertex v at distance no more than k. Distance between two vertices of the tree is the minimum possible number of edges of the path between them.
As this number of ways to paint the tree can be large, Ostap wants you to compute it modulo 109 + 7. Two ways to paint the tree are considered different if there exists a vertex that is painted black in one way and is not painted in the other one.
Input
The first line of the input contains two integers n and k (1 ≤ n ≤ 100, 0 ≤ k ≤ min(20, n - 1)) — the number of vertices in Ostap's tree and the maximum allowed distance to the nearest black vertex. Don't miss the unusual constraint for k.
Each of the next n - 1 lines contain two integers ui and vi (1 ≤ ui, vi ≤ n) — indices of vertices, connected by the i-th edge. It's guaranteed that given graph is a tree.
Output
Print one integer — the remainder of division of the number of ways to paint the tree by 1 000 000 007 (109 + 7).
Examples
2 0
1 2
1
2 1
1 2
3
4 1
1 2
2 3
3 4
9
7 2
1 2
2 3
1 4
4 5
1 6
6 7
91
Note
In the first sample, Ostap has to paint both vertices black.
In the second sample, it is enough to paint only one of two vertices, thus the answer is 3: Ostap can paint only vertex 1, only vertex 2, vertices 1 and 2 both.
In the third sample, the valid ways to paint vertices are: {1, 3}, {1, 4}, {2, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}.
状态定义见代码注释,注意合并两个子树的时候如果最近的黑点到根的距离>k那么就相当于没有黑点。
/*
f[x][y][z] => 以x为根的子树中 ,最近的黑点距离x为 y-1 ,
最远的(没有被覆盖到的)白点距离x为 z-1 的方案数。 如果不存在黑点或白点那么那一维是0
*/
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int ha=1000000007;
const int maxn=105;
int hd[maxn],n,m,to[maxn*2],num;
int ne[maxn*2],f[maxn][25][25],k;
int ans=0,g[25][25]; inline int add(int x,int y){
x+=y;
return x>=ha?x-ha:x;
} inline void addline(int x,int y){
to[++num]=y,ne[num]=hd[x],hd[x]=num;
} inline void MERGE(int x,int y){
memset(g,0,sizeof(g)); for(int i=k+1;i>=0;i--)
for(int j=k+1;j>=0;j--) if(f[x][i][j])
for(int I=k+1,NearB,FarW;I>=0;I--)
for(int J=k+1;J>=0;J--) if(f[y][I][J]){
NearB=1<<30;
if(i) NearB=i;
if(I) NearB=min(NearB,I+1);
if(NearB>k+1) NearB=0; FarW=0;
if(j&&(!I||(j+I-1)>k)) FarW=j;
if(J&&(!i||(J+i-1)>k)) FarW=max(FarW,J+1); g[NearB][FarW]=add(g[NearB][FarW],f[x][i][j]*(ll)f[y][I][J]%ha);
} memcpy(f[x],g,sizeof(g));
} void dfs(int x,int fa){
f[x][1][0]=f[x][0][1]=1;
for(int i=hd[x];i;i=ne[i]) if(to[i]!=fa){
dfs(to[i],x);
MERGE(x,to[i]);
}
} inline void calc(){
for(int i=k+1;i>=0;i--) ans=add(ans,f[1][i][0]); /*
for(int i=1;i<=n;i++)
for(int j=0;j<=k+1;j++)
for(int l=0;l<=k+1;l++) printf("f[%d][%d][%d] = %d\n",i,j,l,f[i][j][l]);
*/
} int main(){
scanf("%d%d",&n,&k);
int uu,vv;
for(int i=1;i<n;i++){
scanf("%d%d",&uu,&vv);
addline(uu,vv),addline(vv,uu);
} dfs(1,1);
calc();
printf("%d\n",ans);
return 0;
}
Codeforces 735 E Ostap and Tree的更多相关文章
- Codeforces Round #382 (Div. 2)E. Ostap and Tree
E. Ostap and Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(启发式合并)
codeforces 741D Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths 题意 给出一棵树,每条边上有一个字符,字符集大小只 ...
- codeforces 812E Sagheer and Apple Tree(思维、nim博弈)
codeforces 812E Sagheer and Apple Tree 题意 一棵带点权有根树,保证所有叶子节点到根的距离同奇偶. 每次可以选择一个点,把它的点权删除x,它的某个儿子的点权增加x ...
- codeforces 220 C. Game on Tree
题目链接 codeforces 220 C. Game on Tree 题解 对于 1节点一定要选的 发现对于每个节点,被覆盖切选中其节点的概率为祖先个数分之一,也就是深度分之一 代码 #includ ...
- Codeforces E. Alyona and a tree(二分树上差分)
题目描述: Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Codeforces 379 F. New Year Tree
\(>Codeforces \space 379 F. New Year Tree<\) 题目大意 : 有一棵有 \(4\) 个节点个树,有连边 \((1,2) (1,3) (1,4)\) ...
- 【27.91%】【codeforces 734E】Anton and Tree
time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- codeforces 342E :Xenia and Tree
Description Xenia the programmer has a tree consisting of n nodes. We will consider the tree nodes i ...
- Codeforces Edu3 E. Minimum spanning tree for each edge
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
随机推荐
- 洛谷 P3958 奶酪
谨以此题来纪念我爆炸的NOIp2017 这个题虽然很多人说是并查集,但是搜索也是毫无压力的,考场搜索细节写挂,爆了个不上不下的80分.今天无意看到这道题,终于AC 首先这道题要考虑一下精度问题,虽然出 ...
- tableview和searchbar的适配
iOS7中,如果用UITableViewStyleGrouped的话,里面的 cell会比原来的拉长了,这样做应该是为了统一和UITableViewStylePlain风格时cell的大小一致,所以改 ...
- Java 的访问权限
public>protected>默认(包访问权限)>private,因为protected除了可以被同一包访问,还可以被包外的子类所访问
- Hdu 3177 (贪心)
题目大意: 山洞的体积为\(v\) 第\(i\)个物品放在山洞里会占据\(a_i\)的空间,在搬运过程中至少需要\(b_i\)的空间 问能不能把所有物品都放下 贪心题.比较难看出贪心,但是从无顺序要求 ...
- 主DNS服务-反向解析
上篇说了主DNS正向解析 当中是有个小问题的,什么问题呢? 试问当我们输入wwww或ww或更多w的时候它还能解析出来吗? 或者不输入w的时候还能解析吗? 上篇没有定义是解析不了的,怎么定义呢?很简单, ...
- 【php】 php.ini文件位置解析
配置文件(php.ini)在 PHP 启动时被读取.对于服务器模块版本的 PHP,仅在 web 服务器启动时读取一次.对于CGI 和 CLI 版本,每次调用都会读取. php.ini 的搜索路径如下( ...
- I2C驱动框架(五)
参考:I2C子系统之 adapter driver注册——I2C_dev_init() i2c的操作在内核中是当做字符设备来操作的,相关初始化在由i2c_dev_init函数来初始化. static ...
- linux 下常见命令
===============安装和登陆命令============================================================= Mount: 挂载命令.把存储介 ...
- Leetcode 334.递增的三元子序列
递增的三元子序列 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ≤ n- ...
- 九度oj 题目1100:最短路径
题目描述: N个城市,标号从0到N-1,M条道路,第K条道路(K从0开始)的长度为2^K,求编号为0的城市到其他城市的最短距离 输入: 第一行两个正整数N(2<=N<=100)M(M< ...