N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人重新从1开始报数。问最后剩下的人的编号。
例如:N = 3,K = 2。2号先出列,然后是1号,最后剩下的是3号。
Input
2个数N和K,表示N个人,数到K出列。(2 <= N, K <= 10^6)
Output
最后剩下的人的编号
Input示例
3 2
Output示例
3
解:

 #include <stdio.h>
int main()
{
int n, k;
while (scanf_s("%d%d", &n, &k) != EOF)
{
int move = ;
for (int i = ; i <= n; i++) move = (move + k) % i;
printf("%d\n", move + );
}
}

首先,我是从正向思考,即找出每次去掉的元素,并标记,循环n-1次,最后找到未标记的元素即可。这个思路简单,但实现却麻烦。
然后,是用链表的删改来完成游戏成员的淘汰,删除n-1个节点,最后剩余的就是winner。但这仍不够简单。
最后,注意到约瑟夫环的环状结构的特性,使我们可以利用当k为相同值时,n-1个人玩游戏和n个人玩游戏存在的数学关系解决问题。
这种数学关系简单叙述如下:
n个人玩游戏,k为常数,定义f(n)为n人游戏时的胜利者编号。第一轮淘汰者为(k-1)%n+1(为什么不是k%n?注意取模运算的范围为[0,n-1],考虑k=n的情况),之后我们可以将(k-1)%n+2作为新的排头head,(k-1)%n为尾tail,以另一种方式展开这个环。
由于head=1,tail=n-1时,winner=f(n-1),
则head=(k-1)%n+2,tail=(k-1)%n时,winner=winner+(k-1)%n+1。(考虑到加法中可能存在的“溢出”问题,将公式标准化如下)

winner=f(n-1)+(k-1)%n+1-1)%n+1=(f(n-1)+(k-1)%n)%n+1=(f(n-1)+k-1)%n+1。

所以我们得到递推公式如下:
定义f(n)为n人游戏时的胜利者编号,k由题目定义,
则 f(1)=1;
  f(n)=(f(n-1)+k-1)%n+1;
由于取模运算的范围包括零,所以我们在运算前要-1,运算后要+1。那我们可不可以将这个步骤省略呢?
我们需要改变f(n)的定义,即将f(n)定义为f(n)-1(其实这时候的f(n)可以理解为偏移量,它的值代表的是n人游戏时获胜者的相对于零位置的位置),
所以递推公式化简为:f(1)=0;
          f(n)=(f(n-1)+k)%n;(最终答案不要忘记+1!)

(数论)51NOD 1073 约瑟夫环的更多相关文章

  1. 51nod 1073 约瑟夫环

    题目链接 先说一下什么是约瑟夫环,转自:传送门 关于约瑟夫环问题,无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大( ...

  2. 51nod 1073约瑟夫环

    思路传送门 :http://blog.csdn.net/kk303/article/details/9629329 n里面挑选m个 可以递推从n-1里面挑m个 然后n-1里面的x 可以转换成 n里面的 ...

  3. 51 Nod 1073 约瑟夫环

    1073 约瑟夫环  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人 ...

  4. Java实现约瑟夫环

    什么是约瑟夫环呢? 约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个 ...

  5. poj 3517 约瑟夫环

    最简单的约瑟夫环,虽然感觉永远不会考约瑟夫环,但数学正好刷到这部分,跳过去的话很难过 直接粘别人分析了 约瑟夫问题: 用数学方法解的时候需要注意应当从0开始编号,因为取余会等到0解. 实质是一个递推, ...

  6. C++ 约瑟夫环

    约瑟夫环: 已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,直到圆桌周 ...

  7. 用pl/sql游标实现约瑟夫环

    什么是约瑟夫环: 约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为1的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数, ...

  8. 通过例子进阶学习C++(七)CMake项目通过模板库实现约瑟夫环

    本文是通过例子学习C++的第七篇,通过这个例子可以快速入门c++相关的语法. 1.问题描述 回顾一下约瑟夫环问题:n 个人围坐在一个圆桌周围,现在从第 s 个人开始报数,数到第 m 个人,让他出局:然 ...

  9. php解决约瑟夫环

    今天偶遇一道算法题 "约瑟夫环"是一个数学的应用问题:一群猴子排成一圈,按1,2,-,n依次编号.然后从第1只开始数,数到第m只,把它踢出圈,从它后面再开始数, 再数到第m只,在把 ...

随机推荐

  1. CMM

    CMM CMM的基本概念 CMM(Capability Maturity Model for Software) 它是对于软件组织在定义,实施,度量,控制和改善其软件过程的实践中各个发展阶段的描述.其 ...

  2. 从零开始写STL—栈和队列

    从零开始写STL-栈和队列 适配器模式 意图:将一个类的接口转换成客户希望的另外一个接口.适配器模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作. 主要解决:主要解决在软件系统中,常常要将 ...

  3. Journey CodeForces - 839C

    There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can r ...

  4. [bzoj3238][Ahoi2013]差异_后缀数组_单调栈

    差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...

  5. 【转】c++中placement new操作符

    new:指我们在C++里通常用到的运算符,比如A* a = new A;  对于new来说,有new和::new之分,前者位于std operator new():指对new的重载形式,它是一个函数, ...

  6. Logstash学习系列之插件介绍

    Logstash插件获取方式 插件获取地址: https://github.com/logstash-plugins  在线安装: /plugin install logstash-input-jdb ...

  7. mongodb配置主从模式

    Mongodb的replication主要有两种:主从和副本集(replica set).主从的原理和mysql类似,主节点记录在其上的所有操作oplog,从节点定期轮询主节点获取这些操作,然后对自己 ...

  8. mouse_event function

    https://msdn.microsoft.com/en-us/library/windows/desktop/ms646260(v=vs.85).aspx

  9. socket listen backlog

    http://stackoverflow.com/questions/4253454/question-about-listening-and-backlog-for-sockets The list ...

  10. oracle-扫盲贴:存储过程实现增删改查

    原文引入:http://blog.csdn.net/yangzhawen/article/details/8617179 oracle-扫盲贴:存储过程实现增删改查 分类: oracle2013-02 ...