bzoj2132
最小割
套路最小割。。。
盗一波图 来自GXZ神犇

对于这样的图,我们要么割ai,bj,要么割bi,aj,要么割ai,ci+cj,aj,要么割bi,ci+cj,bj,然后这样建图跑最小割就行了
但这不是重点,这道题我t了大概一个月,不知道为什么,怎么和别人比对代码好像没有什么差异,结果发现判断delta=0不能放在for循环里,否则会很慢。。。俞勇的红书不靠谱啊。。。怪不得我的网络流那么慢。。。
#include<bits/stdc++.h>
using namespace std;
const int N = , inf = ;
const int dx[] = {-, , , }, dy[] = {, , -, };
int head[N], d[N], q[N], iter[N];
struct edge {
int nxt, to, f;
} e[N * ];
int n, cnt = , source, sink, ans, m;
#define id(i, j) (i - 1) * m + j
int read()
{
int x = , f = ; char c = getchar();
while(c < '' || c > '') { if(c == '-') f = -; c = getchar(); }
while(c >= '' && c <= '') { x = x * + c - ''; c = getchar(); }
return x * f;
}
void link(int u, int v, int f)
{
e[++cnt].nxt = head[u];
head[u] = cnt;
e[cnt].to = v;
e[cnt].f = f;
}
void insert(int u, int v, int f)
{
link(u, v, f);
link(v, u, );
}
bool bfs()
{
queue<int> q;
q.push(source);
memset(d, , sizeof(d));
d[source] = ;
while(!q.empty())
{
int u = q.front();
q.pop();
for(int i = head[u]; i; i = e[i].nxt) if(e[i].f && !d[e[i].to])
{
d[e[i].to] = d[u] + ;
q.push(e[i].to);
if(e[i].to == sink) return true;
}
}
return false;
}
int dfs(int u, int delta)
{
if(u == sink || delta == ) return delta;
int ret = ;
for(int &i = iter[u]; i; i = e[i].nxt) if(e[i].f && d[e[i].to] == d[u] + )
{
int x = dfs(e[i].to, min(e[i].f, delta));
if(x == ) d[e[i].to] = ;
e[i].f -= x;
e[i ^ ].f += x;
delta -= x;
ret += x;
if(delta == ) return ret;
}
return ret;
}
int dinic()
{
int ret = ;
while(bfs())
{
for(int i = source; i <= sink; ++i) iter[i] = head[i];
ret += dfs(source, inf);
}
return ret;
}
int main()
{
scanf("%d%d", &n, &m);
sink = n * m + ;
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j)
{
int x, a = id(i, j);
scanf("%d", &x);
ans += x;
if((i + j) & ) insert(source, a, x);
else insert(a, sink, x);
}
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j)
{
int x, a = id(i, j);
scanf("%d", &x);
ans += x;
if((i + j) & ) insert(a, sink, x);
else insert(source, a, x);
}
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j)
{
int x, a = id(i, j), b;
scanf("%d", &x);
for(int k = ; k < ; ++k)
{
int xx = i + dx[k], yy = j + dy[k];
b = id(xx, yy);
if(xx > && xx <= n && yy > && yy <= m)
{
ans += x;
insert(a, b, x);
insert(b, a, x);
}
}
}
printf("%d\n", ans - dinic());
return ;
}
bzoj2132的更多相关文章
- 一类最小割bzoj2127,bzoj2132 bzoj3438
思考一下我们接触的最小割问题 最小割的基本问题(可能会和图论的知识相结合,比如bzoj1266,bzoj1797) 最大权闭合图(bzoj1497) 最大点权覆盖集,最大点权独立集(bzoj1324) ...
- 【BZOJ2132】圈地计划(最小割)
[BZOJ2132]圈地计划(最小割) 题面 BZOJ 题解 对我而言,不可做!!! 所以我膜烂了ZSY大佬 他的博客写了怎么做... 这,,...太强啦!! 完全想不到黑白染色之后反着连边 然后强行 ...
- 【BZOJ2132】圈地计划 最小割
[BZOJ2132]圈地计划 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地. ...
- bzoj2132圈地计划
bzoj2132圈地计划 题意: 一块土地可以纵横划分为N×M块小区域.于第i行第j列的区域,建造商业区将得到Aij收益,建造工业区将得到Bij收益.而如果区域(i,j)相邻(相邻是指两个格子有公共边 ...
- bzoj2132: 圈地计划
要分成两坨对吧.. 所以显然最小割 但是不兹辞啊.. 最小割是最小的啊 求最大费用怎么玩啊 那咱们就把所有费用都加起来,减掉一个最小的呗 但是两个属于不同集合的点贡献的价值是负的啊 网络流怎么跑负的啊 ...
- bzoj2132: 圈地计划(最小割)
传送门 看来以后见到矩形就要黑白染色冷静一下了…… 首先,如果它的要求时候相邻的选择相同,那么就是和这一题一样了->这里 然后考虑不同的要怎么做 那就把矩形黑白染色一下吧 然后令其中一种颜色的A ...
- 【bzoj2132】圈地计划 网络流最小割
题目描述 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土地是一块矩形的区域,可以纵横划 ...
- BZOJ2132 圈地计划 【最小割】
题目 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解, 这块土地是一块矩形的区域,可以纵横划分 ...
- bzoj2132【圈地计划】
题面 思路: 一开始以为和为了博多一样,两边连一样的,后来发现中间连负边的话根本不会割,即割断两块收益为负,所以WA的起飞…… 正解是先黑白染色,每个点和它周围的点连边方式不同.对于黑点A,S--&g ...
随机推荐
- linux目录文件操作
一.linux系统目录结构 1.顶层根目录 顶层根目录使用 “/”来表示 2.linux中的一些重要目录 (1)bin目录 放置常用的可执行文件(其中ls命令位列其中) (2)sbin目录 放置系统的 ...
- LeetCode(29)Divide Two Integers
题目 Divide two integers without using multiplication, division and mod operator. If it is overflow, r ...
- N分之一 竖式除法模拟
N分之一 Description Alice越来越痴迷于数学问题了.一天,爸爸出了个数学题想难倒她,让她求1 / n. 可怜的Alice只有一岁零九个月,回答不上来 ~~~~(>_<)~~ ...
- Git 与其他系统 - Git 与 Subversion
https://git-scm.com/book/zh/v1/Git-%E4%B8%8E%E5%85%B6%E4%BB%96%E7%B3%BB%E7%BB%9F-Git-%E4%B8%8E-Subve ...
- docsearch & algolia
docsearch & algolia The easiest way to add search to your documentation. https://community.algol ...
- 【最大流】Escape
https://www.bnuoj.com/v3/contest_show.php?cid=9149#problem/F [题意] 给定n个人和m个星球,每个人可以匹配某些星球,每个星球有一定的容量限 ...
- 详解SpringBoot 添加对JSP的支持(附常见坑点)
序言: SpringBoot默认不支持JSP,如果想在项目中使用,需要进行相关初始化工作.为了方便大家更好的开发,本案例可直接作为JSP开发的脚手架工程 SpringBoot+War+JSP . 常见 ...
- [NOIP2006] 提高组 洛谷P1063 能量项链
题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定 ...
- 调用系统相机拍照,保存照片,调用系统裁剪API对照片处理,显示裁剪之后的照片
package com.pingyijinren.test; import android.annotation.TargetApi; import android.app.Notification; ...
- [bzoj1692][Usaco2007 Dec]队列变换_后缀数组_贪心
队列变换 bzoj-1692 Usaco-2007 Dec 题目大意:给定一个长度为$n$的字符串.每次从头或尾取出一个字符加到另一个字符串里.要求变换后生成的字符串字典序最小,求字典序最小的字符串. ...