\(\\\)

\(Description\)


给出只包括多个\(0\text~ 9\)的数字集,求有多少个本质不同的全排列,使得组成的数字能够整除\(M\)。

  • \(|S|\in [1,10]\),\(M\in [1,10^3]\)

\(\\\)

\(Solution\)


  • 一眼状压,先将所有数字看作互不相同,\(f[S][k]\)表示集合内数字选取情况为\(S\),当前组成的数对\(M\)取模的结果为\(k\)的方案数,显然边界\(f[0][0]=1\)。
  • 枚举补集里的元素扩展,每次注意余数改为\((k*10+a[j])\%M\)。
  • 注意到每一个答案最后都用到了所有的数,所以所有相同的数最后在每一个答案里都会出现全排列,也就是说答案为\(f[S_{max}][0]\)除掉每一个数的全排列后的答案。

\(\\\)

\(Code\)


#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 1050
#define R register
#define gc getchar
using namespace std; int n,m,t,tot,a[10],p[10],num[10],f[N][N]; int main(){
scanf("%d",&t);
while(t--){
char c=gc(); m=0;
for(R int i=0;i<=9;++i) p[i]=1,num[i]=0;
while(!isdigit(c)) c=gc();
a[tot=1]=c^48; ++num[a[1]];
while(isdigit(c=gc())) ++num[a[++tot]=c^48];
for(R int i=0;i<=9;++i)
for(R int j=1;j<=num[i];++j) p[i]*=j;
while(!isdigit(c)) c=gc();
while(isdigit(c)){
m=(m<<1)+(m<<3)+(c^48); c=gc();
}
for(R int i=0;i<(1<<tot);++i)
for(R int j=0;j<m;++j) f[i][j]=0;
f[0][0]=1;
for(R int i=0;i<(1<<tot);++i)
for(R int j=0;j<m;++j) if(f[i][j]){
for(R int k=0;k<tot;++k)
if(!(i&(1<<k))) f[i|(1<<k)][(j*10+a[k+1])%m]+=f[i][j];
}
for(R int i=0;i<=9;++i) f[(1<<tot)-1][0]/=p[i];
printf("%d\n",f[(1<<tot)-1][0]);
}
return 0;
}

[ SCOI 2007 ] Perm的更多相关文章

  1. 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳

    因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...

  2. 图论(网络流):SCOI 2007 修车

    同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小 ...

  3. 解题:SCOI 2007 蜥蜴

    题面 拆点跑最大流 所有能跑出去的点连向汇点,容量为inf 原点连向所有初始有蜥蜴的点,容量为1 每根柱子拆成两个点“入口”和“出口”,入口向出口连容量为高度的边,出口向别的有高度的柱子的入口连容量为 ...

  4. [SCOI 2007] 修车

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1070 [算法] 首先 , 我们发现 , 在倒数第i个修车会对答案产生i * k的贡献 ...

  5. 【SCOI 2007】 降雨量

    [题目链接] 点击打开链接 [算法] 线段树 此题细节很多,写程序时要细心! [代码] #include<bits/stdc++.h> using namespace std; #defi ...

  6. [SCOI 2007] 排列

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1072 [算法] 状压DP [代码] #include<bits/stdc++. ...

  7. poi读取excel模板,填充内容并导出,支持导出2007支持公式自动计算

    /** * 版权所有(C) 2016 * @author www.xiongge.club * @date 2016-12-7 上午10:03:29 */ package xlsx; /** * @C ...

  8. BZOJ 2007: [Noi2010]海拔

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2410  Solved: 1142[Submit][Status] ...

  9. 开源WinForms界面开发框架Management Studio 选项卡文档 插件 Office 2007蓝色风格 后台线程

    Management Studio是我在WinForms小项目开发过程中搭建起来的一个插件式结构的应用程序框架,因为简单灵活又容易扩展,现在将它开源供读者参考. 跑起来的效果图如下所示,具备选项卡式多 ...

随机推荐

  1. 【00】angular学习网站

    [00]   学习资料:   http://angularjs.cn/   英文API:http://docs.angularjs.cn/api     中文API;http://www.apjs.n ...

  2. [bzoj1176]Mokia[CDQ分治]

    啃了一天论文,发现CDQ分治的原理其实很简单,大概就是这样的一类分治:将左右区间按一定规律排序后分开处理,递归到底时直接计算答案,对于一个区间,按照第二关键字split成两个区间,先处理左区间,之后因 ...

  3. Spring的Java配置方式

    Java配置是Spring4.x推荐的配置方式,可以完全替代xml配置. 1     @Configuration 和 @Bean Spring的Java配置方式是通过 @Configuration ...

  4. docker mysql 主从配置

    docker安装运行单实例的MySQL参考另一篇文档 http://www.cnblogs.com/manger/p/7611309.html 1.首先在/data/script下创建两个文件my-m ...

  5. 29、Java并发性和多线程-非阻塞算法

    以下内容转自http://ifeve.com/non-blocking-algorithms/: 在并发上下文中,非阻塞算法是一种允许线程在阻塞其他线程的情况下访问共享状态的算法.在绝大多数项目中,在 ...

  6. Node & Express: some tips

    1. 设置Express端口号: 在app.js中添加 app.set('port', process.env.PORT || 3000); 之后命令行中打入 PORT=1234 node app.j ...

  7. Username is not in the sudoers file. This incident will be reported

    type sudo adduser <username> sudo where username is the name of the user you want to add in th ...

  8. java界面编程(9) ------ 列表框

    本文是自己学习所做笔记,欢迎转载.但请注明出处:http://blog.csdn.net/jesson20121020 列表框和JComboBox组合框明显不同,这不不过体如今外观上. 当激活JCom ...

  9. SyntaxError:identifier starts immediately after numeric literal

    1.错误描写叙述 2.错误原因 因为在改动方法传參的过程,须要传个id,可是这个id是字符串类型,传入的是数值型 3.解决的方法 在传參时,须要加入"",变成字符串类型 User. ...

  10. 细数MQ那些不得不说的8大好处

    消息队列(MQ)是目前系统架构中主流方式,在大型系统及大数据中广泛采用.对任何架构或应用来说, MQ都是一个至关重要的组件.今天我们就来细数MQ那些不得不说的好处. 好处一:解耦 在项目启动之初来预测 ...