重点方法

  • 分组:groupby('列名') groupby(['列1'],['列2'........])

分组步骤:

  1. (spiltting)拆分 按照一些规则将数据分为不同的组

  2. (Applying)申请 对于每组数据分别执行一个函数

  3. (Combining) 组合 将结果组合到一个数据结构

  • 分组后默认统计的方法

    1.size() 大小 = count() max(),min(),std(),median()中位数,first(),last()

    函数名 使用
    count 分组中非NA(空值)的数量
    sum 非NA的和
    mean 非NA的平均值
    median 非NA的值的算术中位数
    std;var 无偏(分母为n-1)标准差和方差
    prod 非NA值的积
    first;last 第一个和最后一个非NA的值

以上统计函数:除了count()外,都会自动过滤非数字列!!!

排重:duplicated() 重复

1.检查重复数据:df.duplicated() 判断整行数据

2.检查重复指定列名:df.duplicated(['列1','列2....'])

3.删除重复数据:df.drop_duplicates()

4.删除时指定保留的数据:df.drop_duplicates(['列1','列2'...],keep='first/last')

  • keep:保存

  • first:第一个

  • last:最后一个

数据透视表

  • df.pivot_table(df,index=['列1','列2...'],values='名',aggfunc=np.mean/sum)

    • index : 排序的列

    • values: 统计列

    • aggfunc :执行的统计函数,不写默认统计平均值

分组替换:categories 分组/分类

  • 实现第二列!分组,并替换数据!

  • df['新列名']=df['B'].astype('category'): 转换为分类/分组类型

  • 分配列名:df['新列名'].cat.categories(['值1','值2....'])

  • 重新设置:df['新列名']=df['新列名'].cat.set_categories(['值1','值2.....'])

读写文件

  • HDF5:存储大数据,可方便和其他语言对接, 了解

    • to_hdf(文件)

    • read_hdf(文件)

  • csv:

    • to_csv(文件)

    • read_csv(文件)

  • 表格 excel:

    • to_excel(文件)

    • read_excel(文件)

Python数据分析 Pandas模块 基础数据结构与简介(二)的更多相关文章

  1. Python数据分析 Pandas模块 基础数据结构与简介(一)

    pandas 入门 简介 pandas 组成 = 数据面板 + 数据分析工具 poandas 把数组分为3类 一维矩阵:Series 把ndarray强大在可以存储任意数据类型可以专门处理时间数据 二 ...

  2. Python数据分析Pandas库之熊猫(10分钟二)

    pandas 10分钟教程(二) 重点发法 分组 groupby('列名') groupby(['列名1','列名2',.........]) 分组的步骤 (Splitting) 按照一些规则将数据分 ...

  3. Python数据分析--Pandas知识点(二)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...

  4. Python数据分析--Pandas知识点(三)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...

  5. python 数据分析--pandas

    接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析 ...

  6. Python数据分析-Day2-Pandas模块

    1.pandas简介 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标 ...

  7. Python数据分析-Pandas(Series与DataFrame)

    Pandas介绍: pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的. Pandas的主要功能: 1)具备对其功能的数据结构DataFrame.Series 2)集成时间序 ...

  8. 第一章:Python数据分析前的基础铺垫

    本节概要 - 数据类型 - 数据结构 - 数据的常用操作方法 数据类型 基础铺垫 定义 我们搞数据时,首先要告诉Python我们的数据类型是什么 数值型:直接写一个数字即可 逻辑型:True,Fals ...

  9. 小白学 Python 数据分析(17):Matplotlib(二)基础操作

    人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...

随机推荐

  1. windows虚拟机下 安装docker 踩过的坑

    首先,你的是win7.8还是win10 windows对docker兼容也是最近的事,所以win7.8的话,安装docker是要用工具箱的,不过官方给了下载. 国内话的可以通过,阿里镜像,或者清华镜像 ...

  2. PHP使用curl函数实现多种请求(post,get)

    PHP使用curl函数实现get,post请求 一.CURL介绍 CURL是一个非常强大的开源库,支持很多协议,包括HTTP.FTP.TELNET等,我们使用它来发送HTTP请求.它给我 们带来的好处 ...

  3. javascript回调函数那些事~

    什么是回调函数? 回调函数就是一个通过函数指针调用的函数.如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用为调用它所指向的函数时,我们就说这是回调函数.回调函数不是由该函数的实现方直 ...

  4. 【学习笔记】彻底理解JS中的this

    首先必须要说的是,this的指向在函数定义的时候是确定不了的,只有函数执行的时候才能确定this到底指向谁,实际上this的最终指向的是那个调用它的对象(这句话有些问题,后面会解释为什么会有问题,虽然 ...

  5. Flutter 1.0 正式版: Google 的跨平台 UI 工具包

    今天我们非常高兴的宣布,Flutter 的 1.0 版本正式发布!Flutter 是 Google 为您打造的 UI 工具包,帮助您通过一套代码同时在 iOS 和 Android 上构建媲美原生体验的 ...

  6. 一段字符串中间提取json字符串

    项目过程中经常打日志:LOG.error("[failure][CreateOrder] param:{}", JSON.toJSONString(userCreateOrderD ...

  7. mac下fiddler安装配置启动及iphone配置连接

    Getting started 下载安装Mono 如果没有下载则下载:https://www.mono-project.com/download/stable/#download-mac 从Mozil ...

  8. IOS问题

    #import "EXFifthViewController.h" @interface EXFifthViewController () @end @implementation ...

  9. instance of type of object.prototype.tostring 区别

    typeof typeof 是一个操作符,其右侧跟一个一元表达式,并返回这个表达式的数据类型.   返回的结果用该类型的字符串(全小写字母)形式表示,包括以下 6 种:   number.boolea ...

  10. chart 图片组件 生成后不能动态更新,需要销毁dom,从新载入 用 v-if 和 this.$nextTick(() => {

    <chart-box v-if="cbData1Bool" cb-text="基本概况" chartBoxSele="饼状图" :cb ...