上一篇博客中,我们分析了Akka remote模式下消息发送的过程,但细心的读者一定发现没有介绍网络相关初始化、创建链接、释放链接的过程,本文就介绍一下相关的内容。

  网络初始化就离不开ActorSystem的初始化,毕竟ActorSystem初始化之后就可以创建Actor并发送远程消息了。在ActorSystem初始化时,调用了RemoteActorRefProvider的init函数,init创建了Remoting这个RemoteTransport,并调用了start,而RemoteTransport作用是什么呢?

/**
* INTERNAL API
*
* The remote transport is responsible for sending and receiving messages.
* Each transport has an address, which it should provide in
* Serialization.currentTransportInformation (thread-local) while serializing
* actor references (which might also be part of messages). This address must
* be available (i.e. fully initialized) by the time the first message is
* received or when the start() method returns, whatever happens first.
*/
private[akka] abstract class RemoteTransport(val system: ExtendedActorSystem, val provider: RemoteActorRefProvider)

  transport一般用来做网络传输层,负责收发消息。每个transport有一个本地address与之绑定,这个address一般就是我们配置的remote监听的本地地址(或者端口随机的本地地址)。

  Remoting.start我们有分析过,简单来说就是创建了EndpointManager对象,并发送Listen消息等待返回,listen结束后发送StartupFinished消息。那么网络初始化(或绑定)的代码应该就是在Listen消息的处理过程中了,处理Listen消息时,调用了listen函数,这个之前也分析到过。

private def listens: Future[Seq[(AkkaProtocolTransport, Address, Promise[AssociationEventListener])]] = {
/*
* Constructs chains of adapters on top of each driver as given in configuration. The resulting structure looks
* like the following:
* AkkaProtocolTransport <- Adapter <- ... <- Adapter <- Driver
*
* The transports variable contains only the heads of each chains (the AkkaProtocolTransport instances).
*/
val transports: Seq[AkkaProtocolTransport] = for ((fqn, adapters, config) ← settings.Transports) yield { val args = Seq(classOf[ExtendedActorSystem] → context.system, classOf[Config] → config) // Loads the driver -- the bottom element of the chain.
// The chain at this point:
// Driver
val driver = extendedSystem.dynamicAccess
.createInstanceFor[Transport](fqn, args).recover({ case exception ⇒ throw new IllegalArgumentException(
s"Cannot instantiate transport [$fqn]. " +
"Make sure it extends [akka.remote.transport.Transport] and has constructor with " +
"[akka.actor.ExtendedActorSystem] and [com.typesafe.config.Config] parameters", exception) }).get // Iteratively decorates the bottom level driver with a list of adapters.
// The chain at this point:
// Adapter <- ... <- Adapter <- Driver
val wrappedTransport =
adapters.map { TransportAdaptersExtension.get(context.system).getAdapterProvider }.foldLeft(driver) {
(t: Transport, provider: TransportAdapterProvider) ⇒
// The TransportAdapterProvider will wrap the given Transport and returns with a wrapped one
provider.create(t, context.system.asInstanceOf[ExtendedActorSystem])
} // Apply AkkaProtocolTransport wrapper to the end of the chain
// The chain at this point:
// AkkaProtocolTransport <- Adapter <- ... <- Adapter <- Driver
new AkkaProtocolTransport(wrappedTransport, context.system, new AkkaProtocolSettings(conf), AkkaPduProtobufCodec)
} // Collect all transports, listen addresses and listener promises in one future
Future.sequence(transports.map { transport ⇒
transport.listen map { case (address, listenerPromise) ⇒ (transport, address, listenerPromise) }
})
}

  我们来着重分析下listen函数,它读取了settings.Transports并为之创建了对应的AkkaProtocolTransport对象,settings.Transports是什么呢?

val Transports: immutable.Seq[(String, immutable.Seq[String], Config)] = transportNames.map { name ⇒
val transportConfig = transportConfigFor(name)
(
transportConfig.getString("transport-class"),
immutableSeq(transportConfig.getStringList("applied-adapters")).reverse,
transportConfig)
} val Adapters: Map[String, String] = configToMap(getConfig("akka.remote.adapters")) private def transportNames: immutable.Seq[String] = immutableSeq(getStringList("akka.remote.enabled-transports"))

  其实就是transport-class,applied-adapters,transportConfig三元组的seq。通过源码中的reference.conf,知道transport-class的值默认是akka.remote.transport.netty.NettyTransport,applied-adapters为空。

      # The class given here must implement the akka.remote.transport.Transport
# interface and offer a public constructor which takes two arguments:
# 1) akka.actor.ExtendedActorSystem
# 2) com.typesafe.config.Config
transport-class = "akka.remote.transport.netty.NettyTransport" # Transport drivers can be augmented with adapters by adding their
# name to the applied-adapters list. The last adapter in the
# list is the adapter immediately above the driver, while
# the first one is the top of the stack below the standard
# Akka protocol
applied-adapters = []

  NettyTransport我们应该知道具体是做啥的了吧,就是用来具体创建链接、监听链接状态,收发消息的。另外adapters默认为空,所以这段for代码,就是加载了transport-class对应类的实例,然后把它作为参数传给了AkkaProtocolTransport。由于可以配置多个transport并监听不同的地址,所以这里是一个seq,不过默认只有一个。

  listen函数的最后一行调用了所有transport的listen函数,并返回transport/address/listenerPromise三元组seq。

/**
* Implementation of the Akka protocol as a Transport that wraps an underlying Transport instance.
*
* Features provided by this transport are:
* - Soft-state associations via the use of heartbeats and failure detectors
* - Secure-cookie handling
* - Transparent origin address handling
* - pluggable codecs to encode and decode Akka PDUs
*/
private[remote] class AkkaProtocolTransport(
wrappedTransport: Transport,
private val system: ActorSystem,
private val settings: AkkaProtocolSettings,
private val codec: AkkaPduCodec) extends ActorTransportAdapter(wrappedTransport, system)

  AkkaProtocolTransport其实是对底层协议的代理、封装,并提供其他一些特性,例如心跳和失败检测,编解码插件等。那AkkaProtocolTransport的listen在哪里实现呢?

override def listen: Future[(Address, Promise[AssociationEventListener])] = {
val upstreamListenerPromise: Promise[AssociationEventListener] = Promise() for {
(listenAddress, listenerPromise) ← wrappedTransport.listen
// Enforce ordering between the signalling of "listen ready" to upstream
// and initialization happening in interceptListen
_ ← listenerPromise.tryCompleteWith(interceptListen(listenAddress, upstreamListenerPromise.future)).future
} yield (augmentScheme(listenAddress), upstreamListenerPromise)
}

  通过它的继承关系我们找到了AbstractTransportAdapter,其实也就是调用wrappedTransport的listen,那不就是在调用NettyTransport的listen么?

override def listen: Future[(Address, Promise[AssociationEventListener])] = {
for {
address ← addressToSocketAddress(Address("", "", settings.BindHostname, settings.BindPortSelector))
} yield {
try {
val newServerChannel = inboundBootstrap match {
case b: ServerBootstrap ⇒ b.bind(address)
case b: ConnectionlessBootstrap ⇒ b.bind(address)
} // Block reads until a handler actor is registered
newServerChannel.setReadable(false)
channelGroup.add(newServerChannel) serverChannel = newServerChannel addressFromSocketAddress(newServerChannel.getLocalAddress, schemeIdentifier, system.name, Some(settings.Hostname),
if (settings.PortSelector == 0) None else Some(settings.PortSelector)) match {
case Some(address) ⇒
addressFromSocketAddress(newServerChannel.getLocalAddress, schemeIdentifier, system.name, None, None) match {
case Some(address) ⇒ boundTo = address
case None ⇒ throw new NettyTransportException(s"Unknown local address type [${newServerChannel.getLocalAddress.getClass.getName}]")
}
localAddress = address
associationListenerPromise.future.foreach { _ ⇒ newServerChannel.setReadable(true) }
(address, associationListenerPromise)
case None ⇒ throw new NettyTransportException(s"Unknown local address type [${newServerChannel.getLocalAddress.getClass.getName}]")
}
} catch {
case NonFatal(e) ⇒ {
log.error("failed to bind to {}, shutting down Netty transport", address)
try { shutdown() } catch { case NonFatal(e) ⇒ } // ignore possible exception during shutdown
throw e
}
}
}
}
def addressToSocketAddress(addr: Address): Future[InetSocketAddress] = addr match {
case Address(_, _, Some(host), Some(port)) ⇒ Future { blocking { new InetSocketAddress(InetAddress.getByName(host), port) } }
case _ ⇒ Future.failed(new IllegalArgumentException(s"Address [$addr] does not contain host or port information."))
}

  简单来说就是根据address配置去创建一个InetSocketAddress并进行绑定、创建chennel等其他网络初始化。

  至此EndpointManager对Listen消息处理完毕,就是初始化网络状态,进行监听,由于最后还收到了StartupFinished,所以EndpointManager进入了accepting状态。

    case StartupFinished ⇒
context.become(accepting)

  EndpointManager.accepting之前只分析了对Send消息的处理,其实还有一个非常重要的消息处理过程:接收连接请求、并创建链接。也就是对InboundAssociation消息的处理。那InboundAssociation是如何产生的呢?这还需要回过头分析NettyTransport。其中有一个字段,在listen中也用到了:inboundBootstrap

private val inboundBootstrap: Bootstrap = settings.TransportMode match {
case Tcp ⇒ setupBootstrap(new ServerBootstrap(serverChannelFactory), serverPipelineFactory)
case Udp ⇒ setupBootstrap(new ConnectionlessBootstrap(serverChannelFactory), serverPipelineFactory)
}

  根据mode判断创建哪种类型的Bootstrap。

val TransportMode: Mode = getString("transport-protocol") match {
case "tcp" ⇒ Tcp
case "udp" ⇒ Udp
case unknown ⇒ throw new ConfigurationException(s"Unknown transport: [$unknown]")
}

  很显然是创建ServerBootstrap。此过程中还传入了一个非常关键的对象:serverPipelineFactory。

private val serverPipelineFactory: ChannelPipelineFactory = new ChannelPipelineFactory {
override def getPipeline: ChannelPipeline = {
val pipeline = newPipeline
if (EnableSsl) pipeline.addFirst("SslHandler", sslHandler(isClient = false))
val handler = if (isDatagram) new UdpServerHandler(NettyTransport.this, associationListenerPromise.future)
else new TcpServerHandler(NettyTransport.this, associationListenerPromise.future, log)
pipeline.addLast("ServerHandler", handler)
pipeline
}
}

  根据上下文以及netty基础概念得知,ChannelPipelineFactory,而getPipeline中addLast函数添加了一个非常重要的handler:TcpServerHandler。

private[remote] class TcpServerHandler(_transport: NettyTransport, _associationListenerFuture: Future[AssociationEventListener], val log: LoggingAdapter)
extends ServerHandler(_transport, _associationListenerFuture) with TcpHandlers { override def onConnect(ctx: ChannelHandlerContext, e: ChannelStateEvent): Unit =
initInbound(e.getChannel, e.getChannel.getRemoteAddress, null) }

  TcpServerHandler在OnConnect时会调用initInbound。

final protected def initInbound(channel: Channel, remoteSocketAddress: SocketAddress, msg: ChannelBuffer): Unit = {
channel.setReadable(false)
associationListenerFuture.foreach {
listener ⇒
val remoteAddress = NettyTransport.addressFromSocketAddress(remoteSocketAddress, transport.schemeIdentifier,
transport.system.name, hostName = None, port = None).getOrElse(
throw new NettyTransportException(s"Unknown inbound remote address type [${remoteSocketAddress.getClass.getName}]"))
init(channel, remoteSocketAddress, remoteAddress, msg) { listener notify InboundAssociation(_) }
}
}

  initInbound会调用init函数,init源码如下:

final protected def init(channel: Channel, remoteSocketAddress: SocketAddress, remoteAddress: Address, msg: ChannelBuffer)(
op: (AssociationHandle ⇒ Any)): Unit = {
import transport._
NettyTransport.addressFromSocketAddress(channel.getLocalAddress, schemeIdentifier, system.name, Some(settings.Hostname), None) match {
case Some(localAddress) ⇒
val handle = createHandle(channel, localAddress, remoteAddress)
handle.readHandlerPromise.future.foreach {
listener ⇒
registerListener(channel, listener, msg, remoteSocketAddress.asInstanceOf[InetSocketAddress])
channel.setReadable(true)
}
op(handle) case _ ⇒ NettyTransport.gracefulClose(channel)
}
}

  init简单来说就是创建一个handle,并调用op(handle),联系上下文我们知道op应该就是“{ listener notify InboundAssociation(_) }”这段代码。就是用InboundAssociation封装handle,并调用listener的notify!!!我们好像找到了InboundAssociation消息的来源!!!那listener究竟是在哪里赋值的呢?

这个就比较曲折了,具体过程不再展示,只说结果。就是在listens成功之后,给self发送了一个ListensResult消息,收到消息后,有一段代码是在赋值:promise.success(ActorAssociationEventListener(self))。这里的promise就是上面代码中的listener。

    case Listen(addressesPromise) ⇒
listens map { ListensResult(addressesPromise, _) } recover {
case NonFatal(e) ⇒ ListensFailure(addressesPromise, e)
} pipeTo self
case ListensResult(addressesPromise, results) ⇒
transportMapping = results.groupBy {
case (_, transportAddress, _) ⇒ transportAddress
} map {
case (a, t) if t.size > 1 ⇒
throw new RemoteTransportException(s"There are more than one transports listening on local address [$a]", null)
case (a, t) ⇒ a → t.head._1
}
// Register to each transport as listener and collect mapping to addresses
val transportsAndAddresses = results map {
case (transport, address, promise) ⇒
promise.success(ActorAssociationEventListener(self))
transport → address
}
addressesPromise.success(transportsAndAddresses)

  ActorAssociationEventListener源码非常简单,就是把收到的消息发送给actor,而这里的actor就是上面代码中的self,其实就是EndpointManager。

  /**
* Class to convert ordinary [[akka.actor.ActorRef]] instances to an AssociationEventListener. The adapter will
* forward event objects as messages to the provided ActorRef.
* @param actor
*/
final case class ActorAssociationEventListener(actor: ActorRef) extends AssociationEventListener {
override def notify(ev: AssociationEvent): Unit = actor ! ev
}

  至此我们就回到了EndpointManager中对InboundAssociation消息的处理,handleInboundAssociation就不再详细分析,这应该就是建立连接的过程。至此我们就可以正常的发送消息了,毕竟本地服务的socket已经与远程ActorSystem对应的socket建立了链接。但远程ActorSystem网络对象收到消息之后如何分发给指定的Actor呢?我们下篇博客继续分析。

Akka源码分析-Remote-网络链接的更多相关文章

  1. Akka源码分析-Remote-网络链接生命周期

    remote模式下,网络链接的生命周期往往影响着对应Actor的生命周期,那么网络链接的生命周期是怎么样的呢? 每一个与远程系统的链路都是四个状态之一:空闲.活跃.被守护.被隔离.远程系统的某个地址没 ...

  2. Akka源码分析-Remote-收消息

    上一遍博客中,我们分析了网络链接建立的过程,一旦建立就可以正常的收发消息了.发送消息的细节不再分析,因为对于本地的actor来说这个过程相对简单,它只是创立链接然后给指定的netty网路服务发送消息就 ...

  3. Akka源码分析-Persistence

    在学习akka过程中,我们了解了它的监督机制,会发现actor非常可靠,可以自动的恢复.但akka框架只会简单的创建新的actor,然后调用对应的生命周期函数,如果actor有状态需要回复,我们需要h ...

  4. Akka源码分析-Cluster-Distributed Publish Subscribe in Cluster

    在ClusterClient源码分析中,我们知道,他是依托于“Distributed Publish Subscribe in Cluster”来实现消息的转发的,那本文就来分析一下Pub/Sub是如 ...

  5. Akka源码分析-Cluster-Singleton

    akka Cluster基本实现原理已经分析过,其实它就是在remote基础上添加了gossip协议,同步各个节点信息,使集群内各节点能够识别.在Cluster中可能会有一个特殊的节点,叫做单例节点. ...

  6. Akka源码分析-local-DeathWatch

    生命周期监控,也就是死亡监控,是akka编程中常用的机制.比如我们有了某个actor的ActorRef之后,希望在该actor死亡之后收到响应的消息,此时我们就可以使用watch函数达到这一目的. c ...

  7. Akka源码分析-Cluster-ActorSystem

    前面几篇博客,我们依次介绍了local和remote的一些内容,其实再分析cluster就会简单很多,后面关于cluster的源码分析,能够省略的地方,就不再贴源码而是一句话带过了,如果有不理解的地方 ...

  8. nginx源码分析之网络初始化

    nginx作为一个高性能的HTTP服务器,网络的处理是其核心,了解网络的初始化有助于加深对nginx网络处理的了解,本文主要通过nginx的源代码来分析其网络初始化. 从配置文件中读取初始化信息 与网 ...

  9. Akka源码分析-Akka Typed

    对不起,akka typed 我是不准备进行源码分析的,首先这个库的API还没有release,所以会may change,也就意味着其概念和设计包括API都会修改,基本就没有再深入分析源码的意义了. ...

随机推荐

  1. Python爬虫常用库安装

    建议更换pip源到国内镜像,下载会快很多:https://www.cnblogs.com/believepd/p/10499844.html requests pip3 install request ...

  2. linux nethogs-终端下的网络流量监控工具

    推荐:更多linux 性能监测与优化 关注:linux命令大全 有很多适用于Linux系统的开源网络监视工具.比如说,你可以用命令iftop来检查带宽使用情况.netstat用来查看接口统计报告,还有 ...

  3. 【nginx】记录nginx+php-fpm实现大文件下载排坑的过程

    先上一段代码,支持大文件下载和断点续传,代码来源互联网. set_time_limit(0); // 省略取文件路径的过程,这里直接是文件完整路径 $filePath = get_save_path( ...

  4. 3. Python中的分支判断、循环

    本文利用的是Python 3.x版本,建议学习3.x版本 Python中的分支判断.循环 1. 分支条件判断 1.1 比较操作 以下是数之间常见的比较操作,例如5>3就是数学意义上的比较,5是大 ...

  5. Latex Notes

    latex Table of Contents 1. Presentation/Slides with Beamer 2. Drawing in LaTex With TikZ 3. Tracked ...

  6. vue父组件向子组件传递参数

    父组件中引用的子组件 <pics :is-pics="showpics" // 这是我们要传递的参数 :is-product="productMsg" : ...

  7. 洛谷月赛2018.8 T1题解(U28036 Nagisa loves Tomoya)

    [题解] 我们设原来的数组为a1,a2,a3..., 那么一次操作之后的数组变为a1+a2,a2+a3,a3+a4..., 两次操作之后数组变为a1+2a2+a3,a2+2a3+a4,a3+2a4+a ...

  8. [bzoj4567][Scoi2016][背单词] (贪心+trie树)

    Description Lweb 面对如山的英语单词,陷入了深深的沉思,“我怎么样才能快点学完,然后去玩三国杀呢?”.这时候睿智 的凤老师从远处飘来,他送给了 Lweb 一本计划册和一大缸泡椒,他的计 ...

  9. 微信小程序-template模板

    ============================= 构建template模板                    ============================= 1.分析得出共为 ...

  10. String类的判断功能

    /* * Object:是类层级结构中的根类,所有的类都直接或间接的继承自该类. * 如果一个方法的形式参数是Object,那么这里我们就可以传递它的任意的子类对象. * * String类的判断功能 ...