【题目大意】

叫你在\(n×m\)的棋盘上放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,问有多少种放置方法。

【关键词】

  • \(DP\)
  • 分类讨论
  • 乘法和加法原理

【分析】

仔细观察就会发现,棋盘中每行,每列只有放\(0\),\(1\),\(2\)个三种方案。如果我们把状态量设为列,那么知道任意两种方案的列数,即可用总列数减去它得到另一种方案的列数。

我们设状态方程:\(f[i][j][k]\),表示的是前\(i\)行,其中\(j\)列有\(1\)个棋子,\(k\)列有\(2\)个棋子的总方案数。

那么对于行的转移,我们有三种情况。

  1. 在第\(i\)行不放棋子。
  2. 在第\(i\)行放\(1\)个棋子。
  3. 在第\(i\)行放\(2\)个棋子。
  • 不放棋子,即\(f[i][j][k]=f[i-1][j][k]\)。

  • 放\(1\)个棋子,又分两种情况:

    • 放在有\(1\)个棋子的列上,\(j+1\)列都可以放。即\(f[i][j][k]+=f[i-1][j+1][k-1]*(j+1)\)。
    • 放在没有棋子的列上,\(m-(j-1)-k\)列都可放。即\(f[i][j][k]+=f[i-1][j-1][k]*(m-j-k+1)\)
  • 放\(2\)个棋子,分三种情况:

    • \(2\)个都放在没有棋子的列上。即\(f[i][j][k]+=f[i-1][j-2][k]*C_{m-(j-2)-k}^{2}\)。
    • \(2\)个都放在有\(1\)个棋子的列上。即\(f[i][j][k]+=f[i-1][j+2][k-2]*C_{j+2}^2\)。
    • \(1\)个放在没有棋子的列上,另一个放在有\(1\)个棋子的列上。即\(f[i][j][k]+=f[i-1][j][k-1]*(m-j-k+1)\)。

然后就可以\(A\)掉了,哦,记得开\(long long\)。。。

【Code】

#pragma GCC optimize("O3")
#pragma GCC optimize("O2")
#include<cstdio>
#include<cstdlib>
#include<cstring>
#define ll long long
#define R register
using namespace std;
const int MAX = 100 + 5;
const int mod = 9999973;
inline int read(){
int f = 1, x = 0;char ch;
do { ch = getchar(); if (ch == '-') f = -1; } while (ch < '0'||ch>'9');
do {x = x*10+ch-'0'; ch = getchar(); } while (ch >= '0' && ch <= '9');
return f*x;
}
inline ll c(ll x) {
return (x * (x - 1) / 2) % mod;
}
int n, m;
ll f[MAX][MAX][MAX], ans;
int main(){
n = read(), m = read();
f[0][0][0] = 1;
for (R int i = 1;i <= n; ++i) {
for (R int j = 0;j <= m; ++j) {
for (R int k = 0;k <= m - j; ++k) {
f[i][j][k] = f[i-1][j][k];
if (k > 0) {
f[i][j][k] += (f[i-1][j+1][k-1] * (j+1)) % mod;
f[i][j][k] %= mod; f[i][j][k] += (f[i-1][j][k-1] * j * (m-j-k+1)) %mod;
f[i][j][k] %= mod;
}
if (j > 0) {
f[i][j][k] += (f[i-1][j-1][k] * (m-j-k+1)) %mod;
f[i][j][k] %= mod;
}
if (k > 1) {
f[i][j][k] += (f[i-1][j+2][k-2] * c(j+2)) % mod;
f[i][j][k] %= mod;
}
if (j > 1) {
f[i][j][k] += (f[i-1][j-2][k] * c(m-j-k+2)) % mod;
f[i][j][k] %= mod;
}
}
}
}
for (R int i = 0;i <= m; ++i) {
for (R int j = 0;j <= m; ++j) {
ans += f[n][i][j];
ans %= mod;
}
}
printf("%lld", (ans + mod) % mod);
return 0;
}

【简●解】[AHOI2009]中国象棋的更多相关文章

  1. [Luogu P2051] [AHOI2009]中国象棋 (状压DP->网格DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P2051 Solution 看到这题,我们不妨先看一下数据范围 30pt:n,m<=6 显然搜索,直接 ...

  2. 洛谷 P2051 [AHOI2009]中国象棋 解题报告

    P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...

  3. luogu 2051 [AHOI2009]中国象棋

    luogu 2051 [AHOI2009]中国象棋 真是一道令人愉♂悦丧心并框的好题... 首先"没有一个炮可以攻击到另一个炮"有个充分条件就是没有三个炮在同一行或同一列.证明:显 ...

  4. [洛谷P2051] [AHOI2009]中国象棋

    洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...

  5. 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP

    P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...

  6. Luogu P2051 [AHOI2009]中国象棋(dp)

    P2051 [AHOI2009]中国象棋 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个 \(N\) 行 \(M\) 列的棋盘上,让你放若干个炮(可以是 \(0\) 个),使得没有一个炮 ...

  7. BZOJ1801:[AHOI2009]中国象棋——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1801 https://www.luogu.org/problemnew/show/P2051 这次小 ...

  8. DP【p2051(bzoj 1801)】 [AHOI2009]中国象棋.

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  9. LG_2051_[AHOI2009]中国象棋

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  10. P2051 [AHOI2009]中国象棋

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

随机推荐

  1. 两年Java程序员面试经验分享,从简历制作到面试总结!

    前言 工作两年左右,实习一年左右,正式工作一年左右,其实挺尴尬的,高不成低不就.因此在面试许多公司,找到了目前最适合自己的公司之后.于是做一个关于面试的总结.希望能够给那些依旧在找工作的同学提供帮助. ...

  2. 第十二篇 .NET高级技术之lambda表达式

    最近由于项目需要,刚刚学完了Action委托和Func<T>委托,发现学完了委托就必须学习lambda表达式,委托和Lambda表达式联合起来,才能充分的体现委托的便利.才能使代码更加简介 ...

  3. Ubuntu 18.04 LTS 常见问题解决 2

    1 每次重启后都有system program problem detected sudo gedit /etc/default/apport 然后将打开的文件中的enabled=1改为0,原因暂时不 ...

  4. Eclipse - Maven项目Update Project后jdk版本变成1.5

    问题与分析 最近遇到个奇怪的问题,在Eclipse里对一个Maven项目进行Update Project(快捷键是 Alt+F5),原本jdk为1.8的项目忽然就变成了1.5,于是就报了一些错误. 我 ...

  5. Hibernate的一级缓存:快照区

    参考来源:http://blog.sina.com.cn/s/blog_981ee5d80102w85f.html

  6. Linux常用命令awk

    awk能够处理类似csv这种按行格式的数据,对每一行record按照-F指定的分隔符切割,然后处理.默认支持空格和\t分隔符 1.统计文件里某一列数据等于某个值的个数 -0_djt10.txt 2.拼 ...

  7. page.php 引入js文件

    2种写法 <script type='text/javascript' src='<?php echo get_template_directory_uri().'/js/jquery-1 ...

  8. 解决vue跨域问题

    package com.qmtt.config; import java.io.IOException; import javax.servlet.Filter; import javax.servl ...

  9. AJPFX总结Java 程序初始化过程

    觉得Core Java在Java 初始化过程的总体顺序没有讲,只是说了构造器时的顺序,作者似乎认为路径很多,列出来比较混乱.我觉得还是要搞清楚它的过程比较好.所以现在结合我的学习经验写出具体过程: 过 ...

  10. Hibernate5 与 Spring Boot2 最佳性能实践

    参考 Hibernate5 与 Spring Boot2 最佳性能实践(1) Hibernate5 与 Spring Boot2 最佳性能实践(2) Best Performance Practice ...