【XSY1602】安全网络 树形DP 数学
题目大意
有一颗树,要为每个节点赋一个值\(l_i\leq a_i\leq r_i\),使得任意相邻的节点互素。然后对每个节点统计\(a_i\)在所有可能的情况中的和。
\(n\leq 50,1\leq l_i\leq r_i\leq m,m=50000\)
题解
设\(f_{i,j}\)为以\(i\)为根的子树都赋了值后\(a_i=j\)的方案数。那么怎么处理\(f_v\)对\(f_i\)的贡献呢?
f_{x,i}\times=\sum_{j|i}g_j
\]
\(f_{v,i}\)对\(f_{x,j}\)的贡献是\(\sum_{k|(i,j)}\mu(k)f_{v,i}\)。因为\(\sum_{d|n}\mu(d)=[n=1]\),所以只有\(\gcd(i,j)=1\)是\(f_{v,i}\)对\(f_{x,j}\)有贡献。
设\(h_{i,j}\)为整棵树都赋了值后\(a_i=j\)的方案数。我们发现,\(h_v\)是把\(h_x\)减去\(f_v\)后再加到\(f_v\)上。用逆元搞一搞即可。
然后就是愉快的卡常时间了。
时间复杂度:\(O(nm\log m)\)
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<list>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
ll p=1000000007;
int m=50000;
ll fp(ll a,ll b)
{
ll s=1;
while(b)
{
if(b&1)
s=s*a%p;
a=a*a%p;
b>>=1;
}
return s;
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b)
{
x=1;
y=0;
return a;
}
ll ab=a/b;
ll c=a-b*ab;
ll d=exgcd(b,c,y,x);
y-=x*ab;
return d;
}
namespace prime
{
int cnt;
int b[100010];
int p[100010];
int u[100010];
void init()
{
cnt=0;
memset(b,0,sizeof b);
int i,j;
u[1]=1;
for(i=2;i<=m;i++)
{
if(!b[i])
{
p[++cnt]=i;
u[i]=-1;
}
for(j=1;j<=cnt&&i*p[j]<=m;j++)
{
b[i*p[j]]=1;
if(i%p[j]==0)
{
u[i*p[j]]=0;
break;
}
u[i*p[j]]=-u[i];
}
}
}
};
list<int> li[60];
int l[60];
int r[60];
ll ans[60];
ll f[60][50010];
ll g[60][50010];
ll c[50010];
ll d[50010];
ll e[50010];
void p0(int x)
{
while(x--)
printf(" 0");
printf("\n");
}
void calc()
{
memset(d,0,sizeof d);
memset(e,0,sizeof e);
int i,j;
for(i=1;i<=m;i++)
if(prime::u[i])
{
for(j=i;j<=m;j+=i)
e[i]+=c[j];
e[i]%=p;
e[i]*=prime::u[i];
}
for(i=1;i<=m;i++)
if(e[i])
for(j=i;j<=m;j+=i)
d[j]+=e[i];
for(i=1;i<=m;i++)
d[i]%=p;
}
void dfs1(int x,int fa)
{
int i;
for(i=l[x];i<=r[x];i++)
f[x][i]=1;
for(auto v:li[x])
if(v!=fa)
{
dfs1(v,x);
memcpy(c,f[v],sizeof f[v]);
calc();
for(i=l[x];i<=r[x];i++)
{
g[v][i]=d[i];
f[x][i]=f[x][i]*d[i]%p;
}
}
}
void dfs2(int x,int fa)
{
int i;
if(fa)
{
// memcpy(c,f[x],sizeof f[x]);
// calc();
ll v1,v2;
for(i=1;i<=m;i++)
// if(f[fa][i]&&d[i])
// {
//// c[i]=f[fa][i]*fp(d[i],p-2)%p;
// int gcd=exgcd(d[i],p,v1,v2);
// if(gcd==-1)
// v1=-v1;
// c[i]=f[fa][i]*v1%p;
// }
if(f[fa][i]&&g[x][i])
{
int gcd=exgcd(g[x][i],p,v1,v2);
if(gcd==-1)
v1=-v1;
c[i]=f[fa][i]*v1%p;
}
else
c[i]=0;
calc();
for(i=l[x];i<=r[x];i++)
f[x][i]=f[x][i]*d[i]%p;
}
for(i=l[x];i<=r[x];i++)
{
f[x][i]=(f[x][i]%p+p)%p;
ans[x]=(ans[x]+f[x][i]*i%p)%p;
}
for(auto v:li[x])
if(v!=fa)
dfs2(v,x);
}
void solve()
{
int n;
scanf("%d",&n);
int i;
for(i=1;i<=n;i++)
scanf("%d",&l[i]);
for(i=1;i<=n;i++)
scanf("%d",&r[i]);
for(i=1;i<=n;i++)
li[i].clear();
int x,y;
for(i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
li[x].push_back(y);
li[y].push_back(x);
}
for(i=1;i<=n;i++)
if(l[i]>r[i])
{
p0(n);
return;
}
memset(g,0,sizeof g);
memset(f,0,sizeof f);
memset(ans,0,sizeof ans);
dfs1(1,0);
dfs2(1,0);
for(i=1;i<=n;i++)
printf("%lld ",ans[i]);
printf("\n");
}
int main()
{
freopen("b.in","r",stdin);
freopen("b.out","w",stdout);
int t;
prime::init();
scanf("%d",&t);
while(t--)
solve();
return 0;
}
【XSY1602】安全网络 树形DP 数学的更多相关文章
- 3月28日考试 题解(二分答案+树形DP+数学(高精))
前言:考试挂了很多分,难受…… --------------------- T1:防御 题意简述:给一条长度为$n$的序列,第$i$个数的值为$a[i]$.现让你将序列分成$m$段,且让和最小的一段尽 ...
- Educational Codeforces Round 58 (Rated for Div. 2) D 树形dp + 数学
https://codeforces.com/contest/1101/problem/D 题意 一颗n个点的树,找出一条gcd>1的最长链,输出长度 题解 容易想到从自底向长转移 因为只需要g ...
- [USACO08JAN] 手机网络 - 树形dp
经典问题系列 覆盖半径\(1\)的最小点覆盖集 \(f[i][0]\) 表示不在此处建信号塔,但\(i\)及其子树都有信号 \(f[i][1]\) 表示在此处建信号塔,但\(i\)及其子树都有信号 \ ...
- 树形DP CCPC网络赛 HDU5834 Magic boy Bi Luo with his excited tree
// 树形DP CCPC网络赛 HDU5834 Magic boy Bi Luo with his excited tree // 题意:n个点的树,每个节点有权值为正,只能用一次,每条边有负权,可以 ...
- 【树形dp】Bzoj3391 [Usaco2004 Dec]Tree Cutting网络破坏
Description 约翰意识到贝茜建设网络花费了他巨额的经费,就把她解雇了.贝茜很愤怒,打算狠狠报 复.她打算破坏刚建成的约翰的网络. 约翰的网络是树形的,连接着N(1≤N≤1000 ...
- BZOJ_1495_[NOI2006]网络收费_树形DP
BZOJ_1495_[NOI2006]网络收费_树形DP Description 网络已经成为当今世界不可或缺的一部分.每天都有数以亿计的人使用网络进行学习.科研.娱乐等活动.然而, 不可忽视的一点就 ...
- 5.21 省选模拟赛 luogu P4297 [NOI2006]网络收费 树形dp
LINK:网络收费 还是自己没脑子. 早上思考的时候 发现树形dp不可做 然后放弃治疗了. 没有合理的转换问题的模型是我整个人最大的败笔. 暴力也值得一提 爆搜之后可以写成FFT的形式的计算贡献的方法 ...
- hdu6446 网络赛 Tree and Permutation(树形dp求任意两点距离之和)题解
题意:有一棵n个点的树,点之间用无向边相连.现把这棵树对应一个序列,这个序列任意两点的距离为这两点在树上的距离,显然,这样的序列有n!个,加入这是第i个序列,那么这个序列所提供的贡献值为:第一个点到其 ...
- HDU 6201 2017沈阳网络赛 树形DP或者SPFA最长路
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6201 题意:给出一棵树,每个点有一个权值,代表商品的售价,树上每一条边上也有一个权值,代表从这条边经过 ...
随机推荐
- Floyd最短路(带路径输出)
摘要(以下内容来自百度) Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似. 该算法名称以创始人之一.1978年图灵奖获得者. ...
- 亲测可以永久破解2018版本的pycharm
pycharm是很强大的开发工具,但是每次注册着实让人头疼.网络上很多注册码.注册服务器等等.但都只是一年或者不能用:为次有如下解决方案.亲测有效!!! 如果想让pycharm永久被激活,比如截止日到 ...
- C++实现算法常用的STL---整理
algorithm min(a,b)和max(a,b) #include<iostream> #include<algorithm> using namespace std; ...
- semantic-ui 按钮
1.基础按钮: 使用button.div.span.i等标签,将其class设置为"ui button",显示的就是最基础的按钮样式. <i class="ui b ...
- XManager&XShell如何保存登录用户和登录密码
Xshell配置ssh免密码登录 - qingfeng2556的博客 - CSDN博客https://blog.csdn.net/wuhenzhangxing/article/details/7948 ...
- WCF使用相关
1.不显示WCF服务主机 在WCF项目属性中的WCF选项卡总关闭下图的选项 2.在其他项目中承载WCF服务 其他加载的操作一致,需要把WCF的endpoint和behavior节点复制到 启动服务的那 ...
- Python3练习题 021:递归方法求阶乘
利用递归方法求5!. 方法一 f = 1 for i in range(1,6): f = f * i print(f) 方法二 import functools print(functo ...
- 7 Make vs Do
1 英语中,含有 "do" 和 "make" 的词语, 例如 "make a suggestion" 和 "do your bes ...
- Java 异常处理的误区和经验总结
Java 异常处理的误区和经验总结 1 本文着重介绍了 Java 异常选择和使用中的一些误区,希望各位读者能够熟练掌握异常处理的一些注意点和原则,注意总结和归纳.只有处理好了异常,才能提升开发人员 ...
- Azure系列2.1.2 —— BlobContainerProperties
(小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...