POJ2155(二维树状数组)
Matrix
| Time Limit: 3000MS | Memory Limit: 65536K | |
| Total Submissions: 17226 | Accepted: 6461 |
Description
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
Input
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
Output
There is a blank line between every two continuous test cases.
Sample Input
1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1
Sample Output
1
0
0
1
Source
//2017-10-25
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int N = ; int bt[N][N], n, q; int lowbit(int x){
return x&(-x);
} void add(int x, int y, int v){
while(x <= n){
int j = y;
while(j <= n){
bt[x][j] += v;
j += lowbit(j);
}
x += lowbit(x);
}
} int sum(int x, int y){
int sm = ;
while(x > ){
int j = y;
while(j > ){
sm += bt[x][j];
j -= lowbit(j);
}
x -= lowbit(x);
}
return sm;
} int main()
{
int T;
cin>>T;
while(T--){
scanf("%d%d", &n, &q);
memset(bt, , sizeof(bt));
char op;
int x, y, x1, y1;
while(q--){
getchar();
scanf("%c%d%d", &op, &x, &y);
if(op == 'C'){
scanf("%d%d", &x1, &y1);
add(x, y, );
add(x, y1+, -);
add(x1+, y, -);
add(x1+, y1+, );
}else{
printf("%d\n", sum(x, y)%);
}
}if(T)printf("\n");
} return ;
}
POJ2155(二维树状数组)的更多相关文章
- poj2155二维树状数组
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row an ...
- poj2155二维树状数组区间更新
垃圾poj又交不上题了,也不知道自己写的对不对 /* 给定一个矩阵,初始化为0:两种操作 第一种把一块子矩阵里的值翻转:0->1,1->0 第二种询问某个单元的值 直接累计单元格被覆盖的次 ...
- [poj2155]Matrix(二维树状数组)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 25004 Accepted: 9261 Descripti ...
- [POJ2155]Matrix(二维树状数组)
题目:http://poj.org/problem?id=2155 中文题意: 给你一个初始全部为0的n*n矩阵,有如下操作 1.C x1 y1 x2 y2 把矩形(x1,y1,x2,y2)上的数全部 ...
- 【POJ2155】【二维树状数组】Matrix
Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...
- poj2155一个二维树状数组
...
- 【poj2155】Matrix(二维树状数组区间更新+单点查询)
Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...
- POJ2155 Matrix(二维树状数组||区间修改单点查询)
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row an ...
- POJ2155/LNSYOJ113 Matrix【二维树状数组+差分】【做题报告】
这道题是一个二维树状数组,思路十分神奇,其实还是挺水的 题目描述 给定一个N∗NN∗N的矩阵AA,其中矩阵中的元素只有0或者1,其中A[i,j]A[i,j]表示矩阵的第i行和第j列(1≤i,j≤N)( ...
随机推荐
- 能不能在FOR循环中执行SQL?
JDBC最基础的For循环处理SQL的方式 以及执行时间 package javaee.net.cn.jdbc; import java.sql.*; public class TestTransac ...
- 把ajax包装成promise的形式(3)
概述 为了体验promise的原理,我打算自己把ajax包装成promise的形式.主要希望实现下列功能: // 1.使用success和error进行链式调用,并且可以在后面加上无限个 promis ...
- mysql怎么限制ip访问
grant all privileges on *.* to 'root'@'ip'identified by '密码'; #授权某个ip的用户可以通过密码访问数据库
- 使用Keras搭建cnn+rnn, BRNN,DRNN等模型
Keras api 提前知道: BatchNormalization, 用来加快每次迭代中的训练速度 Normalize the activations of the previous layer a ...
- [android学习]__使用百度地图开放api编写地图定位app
前言 在前面我已经记录关于如何使用百度地图api,以及如何配置相关的androidstudio配置了,接下来将记录如何使用百度地图api开发简单的地图定位apk,我将决定不定期持续更新本篇笔记,在每个 ...
- JavaScript高级编程(1)——JavaScript初识
一.javascript的简介 1.1 javascript的历史回顾. Javascript诞生于1995年.当时,它主要的目的是用来处理一些由服务器端处理的输入验证操作.在javascript没有 ...
- 7-Flink的分布式缓存
分布式缓存 Flink提供了一个分布式缓存,类似于hadoop,可以使用户在并行函数中很方便的读取本地文件,并把它放在taskmanager节点中,防止task重复拉取. 此缓存的工作机制如下:程序注 ...
- 深度学习Trick——用权重约束减轻深层网络过拟合|附(Keras)实现代码
在深度学习中,批量归一化(batch normalization)以及对损失函数加一些正则项这两类方法,一般可以提升模型的性能.这两类方法基本上都属于权重约束,用于减少深度学习神经网络模型对训练数据的 ...
- MyBatis源码解析(七)——DataSource数据源模块之托管数据源
原创作品,可以转载,但是请标注出处地址:http://www.cnblogs.com/V1haoge/p/6675700.html 1 回顾 之前介绍的非池型与池型数据源都是MyBatis自己定义的内 ...
- jdk 8 的内存参数修改
jdk内存实际是jvm内存,jvm有一个运行时数据区,其实就是对这一部分的大小分配.运行时数据区通常包括这几个部分:程序计数器(Program Counter Register).Java栈(VM S ...