「TJOI2015」旅游

LCT沙比题

考虑我们其实是在维护一条链的\(\max\limits_{i<j} v_j-v_i\)

每次直接拿左右子树更新一下就可以了

写的时候把两个方向都维护一下,方便翻转


Code:

#include <cstdio>
#include <cctype>
#include <algorithm>
template <class T>
void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
const int N=50010;
using std::min;
using std::max;
#define ls ch[now][0]
#define rs ch[now][1]
#define fa par[now]
int res[N],tag[N],ansl[N],ansr[N],ch[N][2],par[N],mx[N],mi[N],dat[N],s[N],tot;
int identity(int now){return ch[fa][1]==now;}
bool isroot(int now){return ch[fa][0]==now||ch[fa][1]==now;}
void connect(int f,int now,int typ){ch[fa=f][typ]=now;}
void updata(int now)
{
ansl[now]=max(max(ansl[ls],ansl[rs]),max(mx[rs],dat[now])-min(mi[ls],dat[now]));
ansr[now]=max(max(ansr[ls],ansr[rs]),max(mx[ls],dat[now])-min(mi[rs],dat[now]));
mx[now]=max(max(mx[ls],mx[rs]),dat[now]);
mi[now]=min(min(mi[ls],mi[rs]),dat[now]);
}
void Reverse(int now)
{
res[now]^=1;
std::swap(ls,rs);
std::swap(ansl[now],ansr[now]);
}
void pushdown(int now)
{
if(tag[now])
{
if(ls) tag[ls]+=tag[now],mx[ls]+=tag[now],mi[ls]+=tag[now],dat[ls]+=tag[now];
if(rs) tag[rs]+=tag[now],mx[rs]+=tag[now],mi[rs]+=tag[now],dat[rs]+=tag[now];
tag[now]=0;
}
if(res[now])
{
if(ls) Reverse(ls);
if(rs) Reverse(rs);
res[now]=0;
}
}
void Rotate(int now)
{
int p=fa,typ=identity(now);
connect(p,ch[now][typ^1],typ);
if(isroot(p)) connect(par[p],now,identity(p));
else fa=par[p];
connect(now,p,typ^1);
updata(p),updata(now);
}
void splay(int now)
{
while(isroot(now)) s[++tot]=now,now=fa;
s[++tot]=now;
while(tot) pushdown(s[tot--]);
now=s[1];
for(;isroot(now);Rotate(now))
if(isroot(fa))
Rotate(identity(now)^identity(fa)?now:fa);
}
void access(int now)
{
for(int las=0;now;las=now,now=fa)
splay(now),rs=las,updata(now);
}
void evert(int now){access(now),splay(now),Reverse(now);}
void split(int u,int v)
{
evert(u);
access(v);
splay(v);
}
void modi(int now,int d){tag[now]+=d,dat[now]+=d,mx[now]+=d,mi[now]+=d;}
int query(int u,int v,int d)
{
split(u,v);
modi(v,d);
return ansl[v];
}
int head[N],to[N<<1],Next[N<<1],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
void dfs(int now)
{
for(int v,i=head[now];i;i=Next[i])
if((v=to[i])!=fa)
par[v]=now,dfs(v);
}
int main()
{
int n,q;
read(n);
mi[0]=1<<30;
for(int i=1;i<=n;i++) read(dat[i]),mx[i]=mi[i]=dat[i];
for(int u,v,i=1;i<n;i++) read(u),read(v),add(u,v),add(v,u);
dfs(1);
read(q);
for(int a,b,d,i=1;i<=q;i++)
{
read(a),read(b),read(d);
printf("%d\n",query(a,b,d));
}
return 0;
}

2019.2.24

「TJOI2015」旅游 解题报告的更多相关文章

  1. 「TJOI2015」概率论 解题报告

    「TJOI2015」概率论 令\(f_i\)代表\(i\)个点树形态数量,\(g_i\)代表\(i\)个点叶子个数 然后列一个dp \[ f_i=\sum_{j=0}^{i-1} f_j f_{i-j ...

  2. 「TJOI2015」组合数学 解题报告

    「TJOI2015」组合数学 这不是个贪心吗? 怎么都最小链覆盖=最大点独立集去了 注意到一个点出度最多只有2,可以贪心一下出度的去向 按读入顺序处理就可以,维护一个\(res_i\)数组,表示上一行 ...

  3. 「TJOI2015」线性代数 解题报告

    「TJOI2015」线性代数 和牛客某题很像 在和里面有\(B_{i,j}\)要求是\(A_i,A_j\)都为\(1\),和里面减去\(C_i\)要求\(A_i\)为\(1\),然后先把贡献也就是\( ...

  4. 「ZJOI2016」旅行者 解题报告

    「ZJOI2016」旅行者 对网格图进行分治. 每次从中间选一列,然后枚举每个这一列的格子作为起点跑最短路,进入子矩形时把询问划分一下,有点类似整体二分 至于复杂度么,我不会阿 Code: #incl ...

  5. 「HNOI2016」树 解题报告

    「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...

  6. 「HNOI2016」序列 解题报告

    「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...

  7. 「HNOI2016」网络 解题报告

    「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...

  8. 「HAOI2018」染色 解题报告

    「HAOI2018」染色 是个套路题.. 考虑容斥 则恰好为\(k\)个颜色恰好为\(c\)次的贡献为 \[ \binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k ...

  9. 「HNOI2016」最小公倍数 解题报告

    「HNOI2016」最小公倍数 考虑暴力,对每个询问,处理出\(\le a,\le b\)的与询问点在一起的联通块,然后判断是否是一个联通块,且联通块\(a,b\)最大值是否满足要求. 然后很显然需要 ...

随机推荐

  1. DVWA学习笔记-----环境搭建

    DVWA是一款渗透测试的演练系统,在圈子里是很出名的.如果你需要入门,那么就选它了. 我们通常将演练系统称为靶机,下面请跟着我一起搭建DVWA测试环境.  安装PHP集成环境 我这里用的是phpstu ...

  2. 理解ORM的前提:数据库中的范式和约束

    理解ORM的前提:数据库中的范式和约束 一.数据库中的范式: 范式, 英文名称是 Normal Form,它是英国人 E.F.Codd(关系数据库的老祖宗)在上个世纪70年代提出关系数据库模型后总结出 ...

  3. ssm项目跨域访问

    最近使用ssm开发了一个项目,为了项目的开发速度,采用的是前后端同时开发,所以前端文件没有集成在项目中,最后在调试时涉及到了跨域.跨域的解决方法很多,我采用的是最简单的一种,代码如下: 新建一个过滤器 ...

  4. <转>Python中的新式/经典类的查找方式

    在学习到深度和广度的时候,懵了很久.后来看到这篇文章,恍然大悟.写的很好.特意转过来. 经典类: 只要有父类, 就会沿着一直找, 即使已经找过了~ 新式类: 在类继承的多个类拥有共同父类的情况下, 会 ...

  5. Fabric运维从入门到精通

    1. fabric的安装 在windows下的python3中安装fabric: 在python安装根目录下使用pip install fabric 安装 如图: fabric只支持python2不支 ...

  6. QTP 自动化测试桌面程序--笔记(下拉选择、右键菜单、在控件仓库中查找对应的控件)

    0 在收集窗口控件信息时-最好将可输入的文字去掉,不然控件的名称按输入的文字标记 1 编辑时录制脚本-默认按当前显示的填入的数据标记控件 可以使用 tool-spy-查看控件的x,y 坐标,按坐标在学 ...

  7. idea 通过命令操作git

    关于如何把git(远程)端项目拉取到idea端的操作可以观看:https://blog.csdn.net/autfish/article/details/52513465 在本地向远程提交文件git ...

  8. 前端动态属性页面的 要用id做name 因为这样方便在提交表单时候取到值

    前端动态属性页面的 要用id做name 因为这样方便在提交表单时候取到值

  9. codeforces570C

    Replacement CodeForces - 570C 话说很久很久以前,孙悟空被压在了山下,很无聊.于是他找了一个只包含小写字母和字符"." 的字符串. 由于他比较无聊,他就 ...

  10. Spring 使用介绍(十)—— 单元测试

    一.概述 Spring测试框架提供了对单元测试的支持,以便使用spring的依赖注入和事务管理功能 maven依赖: <dependency> <groupId>junit&l ...